We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

1.

Recall that “self-adjointness” of a densely defined operator H, i.e., H = H, is a much stronger property than being just “Hermitian” or “symmetric,” i.e., HH. On the other hand, the terms “non-Hermitian” and “non-self-adjoint” can be read as synonyms in the present paper, since we are concerned with a “fundamental non-self-adjointness” caused, for instance, by complex coefficients of differential operators, that is, we are not interested in closed symmetric non-self-adjoint operators here.

2.

Bounded and boundedly invertible Ω means Ω,Ω1(H), where (H) denotes the space of bounded operators on H to H.

3.
Adams
,
R. A.
,
Sobolev Spaces
(
Academic Press
,
New York
,
1975
).
4.
Adduci
,
J.
and
Mityagin
,
B.
, “
Eigensystem of an L2-perturbed harmonic oscillator is an unconditional basis
,”
Cent. Eur. J. Math.
10
,
569
589
(
2012
).
5.
Adduci
,
J.
and
Mityagin
,
B.
, “
Root system of a perturbation of a selfadjoint operator with discrete spectrum
,”
Integr. Equations Oper. Theory
73
,
153
175
(
2012
).
6.
Ahmed
,
Z.
, “
Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: Real spectrum of non-Hermitian Hamiltonians
,”
Phys. Lett. A
294
,
287
291
(
2002
).
7.
Albeverio
,
S.
,
Guenther
,
U.
, and
Kuzhel
,
S.
, “
J-self-adjoint operators with C -symmetries: Extension theory approach
,”
J. Phys. A: Math. Theor.
42
,
105205
(
2009
).
8.
Aleman
,
A.
and
Viola
,
J.
, “On weak and strong solution operators for evolution equations coming from quadratic operators,” e-print arXiv:1409.1262, 2014.
9.
Aleman
,
A.
and
Viola
,
J.
, “
Singular-value decomposition of solution operators to model evolution equations
,”
Int. Math. Res. Notices
2015
(
17
),
8275
8288
; e-print arXiv:1409.1255, 2014.
10.
Almog
,
Y.
, “
The stability of the normal state of superconductors in the presence of electric currents
,”
SIAM J. Math. Anal.
40
,
824
850
(
2008
).
11.
Almog
,
Y.
,
Helffer
,
B.
, and
Pan
,
X.-B.
, “
Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field. Part II: The large conductivity limit
,”
SIAM J. Math. Anal.
44
,
3671
3733
(
2012
).
12.
Almog
,
Y.
,
Helffer
,
B.
, and
Pan
,
X.-B.
, “
Superconductivity near the normal state in a half-plane under the action of a perpendicular electric currents and an induced magnetic field
,”
Trans. Am. Math. Soc.
365
,
1183
1217
(
2013
).
13.
Bagarello
,
F.
, “
Examples of pseudo-bosons in quantum mechanics
,”
Phys. Lett. A
374
,
3823
3827
(
2010
).
14.
Bender
,
C. M.
, “
Making sense of non-Hermitian Hamiltonians
,”
Rep. Prog. Phys.
70
,
947
1018
(
2007
).
15.
Bender
,
C. M.
and
Boettcher
,
P. N.
, “
Real spectra in non-Hermitian Hamiltonians having PT symmetry
,”
Phys. Rev. Lett.
80
,
5243
5246
(
1998
).
16.
Bender
,
C. M.
,
Brody
,
D. C.
, and
Jones
,
H. F.
, “
Complex extension of quantum mechanics
,”
Phys. Rev. Lett.
89
,
270401
(
2002
).
17.
Blank
,
J.
,
Exner
,
P.
, and
Havlíček
,
M.
,
Hilbert Space Operators in Quantum Physics
(
Springer
,
2008
).
18.
Montrieux
,
W. B.
, “Estimation de résolvante et construction de quasimode près du bord du pseudospectre,” e-print arXiv:1301.3102 [math.SP] (2013).
19.
Borisov
,
D.
and
Krejčiřík
,
D.
, “
PT -symmetric waveguides
,”
Integr. Equations Oper. Theory
62
,
489
515
(
2008
).
20.
Borisov
,
D.
and
Krejčiřík
,
D.
, “
The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions
,”
Asympt. Anal.
76
,
49
59
(
2012
).
21.
Caliceti
,
E.
,
Graffi
,
S.
,
Hitrik
,
M.
, and
Sjöstrand
,
J.
, “
Quadratic PT -symmetric operators with real spectrum and similarity to self-adjoint operators
,”
J. Phys. A: Math. Theor.
45
,
444007
(
2012
).
22.
Davies
,
E. B.
, “
Pseudo–spectra, the harmonic oscillator and complex resonances
,”
Proc. R. Soc. A
455
,
585
599
(
1999
).
23.
Davies
,
E. B.
, “
Semi-classical states for non-self-adjoint Schrödinger operators
,”
Commun. Math. Phys.
200
,
35
41
(
1999
).
24.
Davies
,
E. B.
, “
Wild spectral behaviour of anharmonic oscillators
,”
Bull. London Math. Soc.
32
,
432
438
(
2000
).
25.
Davies
,
E. B.
, “
Non-self-adjoint differential operators
,”
Bull. London Math. Soc.
34
,
513
532
(
2002
).
26.
Davies
,
E. B.
,
Linear Operators and their Spectra
(
Cambridge University Press
,
2007
).
27.
Davies
,
E. B.
and
Kuijlaars
,
A. B. J.
, “
Spectral asymptotics of the non-self-adjoint harmonic oscillator
,”
J. London Math. Soc.
70
,
420
426
(
2004
).
28.
Davies
,
E. B.
and
Marletta
,
M.
, private communication (2013).
29.
Dencker
,
N.
,
Sjöstrand
,
J.
, and
Zworski
,
M.
, “
Pseudospectra of semiclassical (pseudo-) differential operators
,”
Commun. Pure Appl. Math.
57
,
384
415
(
2004
).
30.
Dieudonné
,
J.
, “Quasi-Hermitian operators,” Proceedings of the International Symposium on Linear Spaces (Jerusalem Academic Press, Jerusalem; Pergamon, Oxford,
1961
), pp. 115–123.
31.
Dimassi
,
M.
and
Sjöstrand
,
J.
,
Spectral Asymptotics in the Semi-Classical Limit
(
London Mathematical Society
,
1999
).
32.
Dorey
,
P.
,
Dunning
,
C.
, and
Tateo
,
R.
, “
Spectral equivalences, Bethe Ansatz equations, and reality properties in PT -symmetric quantum mechanics
,”
J. Phys. A: Math. Gen.
34
,
5679
5704
(
2001
).
33.
Edmunds
,
D. E.
and
Evans
,
W. D.
,
Spectral Theory and Differential Operators
(
Oxford University Press
,
1987
).
34.
Fisher
,
M. E.
, “
Yang-Lee edge singularity and φ3 field theory
,”
Phys. Rev. Lett.
40
,
1610
1613
(
1978
).
35.
Giordanelli
,
I.
and
Graf
,
G. M.
, “
The real spectrum of the imaginary cubic oscillator: An expository proof
,”
Ann. Henri Poincaré
16
,
99
112
(
2014
).
36.
Graefe
,
E.-M.
,
Korsch
,
H. J.
,
Rush
,
A.
, and
Schubert
,
R.
, “
Classical and quantum dynamics in the (non-Hermitian) Swanson oscillator
,”
J. Phys. A: Math. Theor.
48
,
055301
(
2015
).
37.
Hassi
,
S.
and
Kuzhel
,
S.
, “
On J-self-adjoint operators with stable C-symmetry
,”
Proc. R. Soc. Edinburgh: Sect. A Math.
143
,
141
167
(
2013
).
38.
Henry
,
R.
, “
Spectral instability for even non-selfadjoint anharmonic oscillators
,”
J. Spectral Theory
4
,
349
364
(
2014
).
39.
Henry
,
R.
, “
Spectral Projections of the Complex Cubic Oscillator
,”
Ann. Henri Poincaré
15
,
2025
2043
(
2014
).
40.
Herbst
,
I. W.
, “
Dilation analyticity in constant electric field. I. The two body problem
,”
Commun. Math. Phys.
64
(
3
),
279
298
(
1979
).
41.
Hitrik
,
M.
,
Sjöstrand
,
J.
, and
Viola
,
J.
, “
Resolvent estimates for elliptic quadratic differential operators
,”
Anal. & PDE
6
,
181
196
(
2013
).
42.
Hörmander
,
L.
, “
Symplectic classification of quadratic forms, and general Mehler formulas
,”
Math. Z.
219
(
3
),
413
449
(
1995
).
43.
Hörmander
,
L.
,
The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators
,
Classics in Mathematics
(
Springer
,
Berlin
,
2007
), Reprint of the 1994 edition.
44.
Kato
,
T.
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
Berlin
,
1995
).
45.
Krejčiřík
,
D.
, “
Calculation of the metric in the Hilbert space of a PT -symmetric model via the spectral theorem
,”
J. Phys. A: Math. Theor.
41
,
244012
(
2008
).
46.
Krejčiřík
,
D.
and
Siegl
,
P.
, “
PT -symmetric models in curved manifolds
,”
J. Phys. A: Math. Theor.
43
,
485204
(
2010
).
47.
Krejčiřík
,
D.
and
Tater
,
M.
, “
Non-Hermitian spectral effects in a PT -symmetric waveguide
,”
J. Phys. A: Math. Theor.
41
,
244013
(
2008
).
48.
Krejčiřík
,
D.
,
Bíla
,
H.
, and
Znojil
,
M.
, “
Closed formula for the metric in the Hilbert space of a PT -symmetric model
,”
J. Phys. A: Math. Gen.
39
,
10143
10153
(
2006
).
49.
Krejčiřík
,
D.
,
Siegl
,
P.
, and
Železný
,
J.
, “
On the similarity of Sturm-Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators
,”
Complex Anal. Oper. Theory
8
,
255
281
(
2014
).
50.
Mityagin
,
B.
and
Siegl
,
P.
, “
Root system of singular perturbations of the harmonic oscillator type operators
,”
Lett. Math. Phys.
2015
,
1
21
.
51.
Mityagin
,
B.
,
Siegl
,
P.
, and
Viola
,
J.
, “
Differential operators admitting various rates of spectral projection growth
,” e-print arXiv:1309.3751 (
2013
).
52.
Mostafazadeh
,
A.
, “
Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
,”
J. Math. Phys.
43
,
205
214
(
2002
).
53.
Mostafazadeh
,
A.
, “
Pseudo-Hermiticity versus PT symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum
,”
J. Math. Phys.
43
,
2814
2816
(
2002
).
54.
Mostafazadeh
,
A.
, “
Pseudo-Hermiticity versus PT symmetry. III. Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries
,”
J. Math. Phys.
43
,
3944
3951
(
2002
).
55.
Mostafazadeh
,
A.
, “
Pseudo-Hermitian representation of quantum mechanics
,”
Int. J. Geom. Methods Mod. Phys.
7
,
1191
1306
(
2010
).
56.
Pravda-Starov
,
K.
, “
A complete study of the pseudo-spectrum for the rotated harmonic oscillator
,”
J. London Math. Soc.
73
,
745
761
(
2006
).
57.
Pravda-Starov
,
K.
, “
Boundary pseudospectral behaviour for semiclassical operators in one dimension
,”
Int. Math. Res. Not.
2007
,
31
.
58.
Pravda-Starov
,
K.
, “
On the pseudospectrum of elliptic quadratic differential operators
,”
Duke Math. J.
145
,
249
279
(
2008
).
59.
Prudnikov
,
A. P.
,
Brychkov
,
Y. A.
, and
Marichev
,
O. I.
,
Integrals and Series. Special Functions
(
Gordon and Breach Science Publishers
,
Amsterdam
,
1986
), Vol.
2
.
60.
Reddy
,
S. C.
and
Trefethen
,
L. N.
, “
Pseudospectra of the convection-diffusion operator
,”
SIAM J. Appl. Math.
54
,
1634
1649
(
1994
).
61.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics. I. Functional Analysis
(
Academic Press
,
New York
,
1972
).
62.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics. IV. Analysis of Operators
(
Academic Press
,
New York
,
1978
).
63.
Reichel
,
L.
and
Trefethen
,
L. N.
, “
Eigenvalues and pseudo-eigenvalues of Toeplitz matrices
,”
Linear Algebra Appl.
162-164
,
153
185
(
1992
).
64.
Roch
,
S.
and
Silbermann
,
B.
, “
C-algebra techniques in numerical analysis
,”
J. Oper. Theory
35
,
241
280
(
1996
).
65.
Schechter
,
M.
,
Operator Methods in Quantum Mechanics
(
Elsevier
,
1981
).
66.
Scholtz
,
F. G.
,
Geyer
,
H. B.
, and
Hahne
,
F. J. W.
, “
Quasi-Hermitian operators in quantum mechanics and the variational principle
,”
Ann. Phys.
213
,
74
101
(
1992
).
67.
Shargorodsky
,
E.
, “
On the definition of pseudospectra
,”
Bull. London Math. Soc.
41
,
524
534
(
2009
).
68.
Shargorodsky
,
E.
, “
Pseudospectra of semigroup generators
,”
Bull. London Math. Soc.
42
,
1031
1034
(
2010
).
69.
Shin
,
K. C.
, “
On the reality of the eigenvalues for a class of PT -symmetric oscillators
,”
Commun. Math. Phys.
229
,
543
564
(
2002
).
70.
Siegl
,
P.
, “
PT -symmetric square well-perturbations and the existence of metric operator
,”
Int. J. Theor. Phys.
50
,
991
996
(
2011
).
71.
Siegl
,
P.
and
Krejčiřík
,
D.
, “
On the metric operator for the imaginary cubic oscillator
,”
Phys. Rev. D
86
,
121702(R)
(
2012
).
72.
Simon
,
B.
, “
The bound state of weakly coupled Schrödinger operators in one and two dimensions
,”
Ann. Phys.
97
,
279
288
(
1976
).
73.
Sjöstrand
,
J.
, “
Parametrices for pseudodifferential operators with multiple characteristics
,”
Ark. Mat.
12
,
85
130
(
1974
).
74.
Sjöstrand
,
J.
, “
Singularités analytiques microlocales
,” in
Astérisque, 95, Volume 95 of Astérisque
(
Société Mathématique de France
,
Paris
,
1982
), pp.
1
166
.
75.
Swanson
,
M. S.
, “
Transition elements for a non-Hermitian quadratic Hamiltonian
,”
J. Math. Phys.
45
,
585
601
(
2004
).
76.
Szegö
,
G.
,
Orthogonal Polynomials
(
American Mathematical Society
,
Providence, RI
,
1959
).
77.
Trefethen
,
L. N.
and
Embree
,
M.
,
Spectra and Pseudospectra
(
Princeton University Press
,
2005
).
78.
Trefethen
,
L. N.
 et al., Chebfun Version 4.2. The Chebfun Development Team, 2011, http://www.chebfun.org/.
79.
Viola
,
J.
, “
Spectral projections and resolvent bounds for partially elliptic quadratic differential operators
,”
J. Pseudo-Differential Oper. Appl.
4
,
145
221
(
2013
).
80.
Znojil
,
M.
, “
PT -symmetric square well
,”
Phys. Lett. A
285
,
7
10
(
2001
).
81.
Zworski
,
M.
, “
A remark on a paper of E. B. Davies
,”
Proc. Am. Math. Soc.
129
,
2955
2957
(
2001
).
82.
Zworski
,
M.
, “
Semiclassical analysis
,” in
Graduate Studies in Mathematics
(
American Mathematical Society
,
Providence, RI
,
2012
), Vol.
138
.
You do not currently have access to this content.