We consider real symmetric and complex Hermitian random matrices with the additional symmetry hxy = hNy,Nx. The matrix elements are independent (up to the fourfold symmetry) and not necessarily identically distributed. This ensemble naturally arises as the Fourier transform of a Gaussian orthogonal ensemble. It also occurs as the flip matrix model — an approximation of the two-dimensional Anderson model at small disorder. We show that the density of states converges to the Wigner semicircle law despite the new symmetry type. We also prove the local version of the semicircle law on the optimal scale.

1.
Bellissard
,
J.
,
Magnen
,
J.
, and
Rivasseau
,
V.
, “
Supersymmetric analysis of a simplified two-dimensional Anderson model at small disorder
,”
Mark. Proc. Rel. Fields
9
(
2
),
261
278
(
2003
).
2.
Disertori
,
M.
and
Rivasseau
,
V.
, “
Random matrices and the Anderson model
,” in
Random Schrödinger Operators, Panoramas et synthèses
(
Société mathématique de France
,
2008
), Vol.
25
, pp.
161
213
.
3.
Erdős
,
L.
, “
Universality for random matrices and log-gases
,”
Curr. Dev. Math.
2012
,
59
132
.
4.
Erdős
,
L.
,
Knowles
,
A.
,
Yau
,
H.-T.
, and
Yin
,
J.
, “
Spectral statistics of Erdős-Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues
,”
Commun. Math. Phys.
314
(
3
),
587
640
(
2012
).
5.
Erdős
,
L.
,
Knowles
,
A.
,
Yau
,
H.-T.
, and
Yin
,
J.
, “
The local semicircle law for a general class of random matrices
,”
Electron. J. Probab.
18
(
59
),
1
58
(
2013
).
6.
Erdős
,
L.
,
Schlein
,
B.
, and
Yau
,
H.-T.
, “
Local semicircle law and complete delocalization for Wigner random matrices
,”
Commun. Math. Phys.
287
(
2
),
641
655
(
2009
).
7.
Erdős
,
L.
,
Schlein
,
B.
, and
Yau
,
H.-T.
, “
Universality of random matrices and local relaxation flow
,”
Inv. Math.
185
(
1
),
75
119
(
2011
).
8.
Erdős
,
L.
,
Schlein
,
B.
,
Yau
,
H.-T.
, and
Yin
,
J.
, “
The local relaxation flow approach to universality of the local statistics for random matrices
,”
Ann. Inst. Henri Poincare
48
(
1
),
1
46
(
2012
).
9.
Erdős
,
L.
and
Yau
,
H.-T.
, “
Universality of local spectral statistics of random matrices
,”
Bull. Am. Math. Soc.
49
(
3
),
377
414
(
2012
).
10.
Erdős
,
L.
,
Yau
,
H.-T.
, and
Yin
,
J.
, “
Universality for generalized Wigner matrices with Bernoulli distribution
,”
J. Combinatorics
2
(
1
),
15
81
(
2011
).
11.
Erdős
,
L.
,
Yau
,
H.-T.
, and
Yin
,
J.
, “
Bulk universality for generalized Wigner matrices
,”
Probab. Theory Relat. Fields
154
(
1-2
),
341
407
(
2012
).
12.
Erdős
,
L.
,
Yau
,
H.-T.
, and
Yin
,
J.
, “
Rigidity of eigenvalues of generalized Wigner matrices
,”
Adv. Math.
229
(
3
),
1435
1515
(
2012
).
13.
Mehta
,
M. L.
,
Random Matrices
,
Pure and Applied Mathematics
(
Elsevier Science
,
2004
).
14.
Tao
,
T.
and
Vu
,
V.
, “
Random matrices: Universality of local eigenvalue statistics
,”
Acta Math.
206
(
1
),
127
204
(
2011
).
15.
Wigner
,
E. P.
, “
Characteristic vectors of bordered matrices with infinite dimensions
,”
Ann. Math.
62
(
3
),
548
564
(
1955
).
You do not currently have access to this content.