We combine rational homotopy theory and higher Lie theory to describe the Wess-Zumino-Witten (WZW) term in the M5-brane sigma model. We observe that this term admits a natural interpretation as a twisted 7-cocycle on super-Minkowski spacetime with coefficients in the rational 4-sphere. This exhibits the WZW term as an element in twisted cohomology, with the twist given by the cocycle of the M2-brane. We consider integration of this rational situation to differential cohomology and differential cohomotopy.

1.
Azcárraga
,
J.
and
Townsend
,
P.
, “
Superspace geometry and the classification of supersymmetric extended objects
,”
Phys. Rev. Lett.
62
,
2579
2582
(
1989
).
2.
Bergshoeff
,
E.
,
Sezgin
,
E.
, and
Townsend
,
P.
, “
Supermembranes and eleven-dimensional supergravity
,”
Phys. Lett. B
189
,
75
78
(
1987
).
3.
Chryssomalakos
,
C.
,
de Azcárraga
,
J. A.
,
Izquierdo
,
J. M.
, and
Peŕez Bueno
,
J. C.
, “
The geometry of branes and extended superspaces
,”
Nucl. Phys. B
567
,
293
330
(
2000
); e-print arXiv:hep-th/9904137.
4.
Bandos
,
I.
,
Lechner
,
K.
,
Nurmagambetov
,
A.
,
Pasti
,
P.
,
Sorokin
,
D.
, and
Tonin
,
M.
, “
Covariant action for the super-fivebrane of M-theory
,”
Phys. Rev. Lett.
78
,
4332
(
1997
); e-print arXiv:hep-th/9701149.
5.
D’Auria
,
R.
and
Fré
,
P.
, “
Geometric supergravity in D = 11 and its hidden supergroup
,”
Nucl. Phys. B
201
,
101
140
(
1982
).
6.
Distler
,
J.
and
Sharpe
,
E.
, “
Heterotic compactifications with principal bundles for general groups and general levels
,”
Adv. Theor. Math. Phys.
14
,
335
398
(
2010
); e-print arXiv:hep-th/0701244.
7.
Fiorenza
,
D.
,
Rogers
,
C. L.
, and
Schreiber
,
U.
, “
L-algebras of local observables from higher prequantum bundles
,”
Homol., Homotopy Appl.
16
,
107
142
(
2014
); e-print arXiv:1304.6292.
8.
Fiorenza
,
D.
,
Sati
,
H.
, and
Schreiber
,
U.
, “
Extended higher cup-product Chern-Simons theories
,”
J. Geom. Phys.
74
,
130
163
(
2013
); e-print arXiv:1207.5449.
9.
Fiorenza
,
D.
,
Sati
,
H.
, and
Schreiber
,
U.
, “
A higher stacky perspective on Chern-Simons theory
,” in
Mathematical Aspects of Quantum Field Theories
, edited by
Calaque
,
D.
, et al
(
Springer
,
2014
); e-print arXiv:1301.2580.
10.
Fiorenza
,
D.
,
Sati
,
H.
, and
Schreiber
,
U.
, “
Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields
,”
Int. J. Geom. Methods Mod. Phys.
12
,
1550018
(
2015
); e-print arXiv:1308.5264.
11.
Fiorenza
,
D.
,
Schreiber
,
U.
, and
Stasheff
,
J.
, “
Čech-cocycles for differential characteristic classes
,”
Adv. Theor. Math. Phys.
16
,
149
250
(
2012
); e-print arXiv:1011.4735.
12.
Getzler
,
E.
, “
Lie theory for nilpotent L-algebras
,”
Ann. Math.
170
(
1
),
271
301
(
2009
); e-print arXiv:math/0404003v4.
13.
Henneaux
,
M.
and
Mezincescu
,
L.
, “
A sigma model interpretation of Green-Schwarz covariant superstring action
,”
Phys. Lett. B
152
,
340
432
(
1985
).
14.
Henriques
,
A.
, “
Integrating L-algebras
,”
Compos. Math.
144
(
4
),
1017
1045
(
2008
); e-print arXiv:math/0603563.
15.
Kriz
,
I.
and
Sati
,
H.
, “
M-theory, type IIA superstrings, and elliptic cohomology
,”
Adv. Theor. Math. Phys.
8
,
345
(
2004
); e-print arXiv:hep-th/0404013.
16.
Hinich
,
V.
, “
Descent of Deligne groupoids
,”
Int. Math. Res. Not.
5
,
223
239
(
1997
).
17.
Lurie
,
J.
, “
Moduli problems for ring spectra
,” in
Proceedings of the International Congress of Mathematicians 2010
(
ICM
,
2010
), pp.
1099
1125
(2011).
18.
Nikolaus
,
T.
,
Schreiber
,
U.
, and
Stevenson
,
D.
, “
Principal ∞-bundles—General theory
,”
J. Homotopy Relat. Struct.
1
53
(
2014
);
Nikolaus
,
T.
,
Schreiber
,
U.
, and
Stevenson
,
D.
, e-print arXiv:1207.0248.
19.
Pridham
,
J. P.
, “
Unifying derived deformation theories
,”
Adv. Math.
224
(
3
),
772
-
826
(
2010
); e-print arXiv:0705.0344.
20.
Sati
,
H.
, “
Geometric and topological structures related to M-branes
,”
Proc. Symp. Pure Math.
81
,
181
-
236
(
2010
); e-print arXiv:1001.5020 [math.DG].
21.
Sati
,
H.
, “
Framed M-branes, corners, and topological invariants
,” e-print arXiv:1310.1060.
22.
Sati
,
H.
,
Schreiber
,
U.
, and
Stasheff
,
J.
, “
L algebra connections and applications to String- and Chern-Simons n-transport
,” in
Recent Developments in QFT
(
Birkhäuser
,
2009
), pp.
303
-
424
; e-print arXiv:0801.3480.
23.
Sati
,
H.
,
Schreiber
,
U.
, and
Stasheff
,
J.
, “
Fivebrane structures
,”
Rev. Math. Phys.
21
,
1
-
44
(
2009
); e-print arXiv:0805.0564 [math.AT].
24.
Schreiber
,
U.
, “
Differential cohomology in a cohesive topos
,” e-print arXiv:1310.7930.
25.
Schreiber
,
U.
, Structure theory for higher WZW terms, lecture notes accompanying a minicourse at H. Sati (org.),Flavors of cohomology, Pittsburgh, June 2015, available at ncatlab.org/schreiber/show/Structure+Theory+for+Higher+WZW+Terms.
26.
Sullivan
,
D.
, “
Infinitesimal computations in topology
,”
Publ. Math. IHES
47
,
269
-
331
(
1977
).
27.
Witten
,
E.
, “
On holomorphic factorization of WZW and coset models
,”
Commun. Math. Phys.
144
,
189
-
212
(
1992
).
You do not currently have access to this content.