We introduce a concept of a minimal sufficient positive-operator valued measure (POVM), which is the least redundant POVM among the POVMs that have the equivalent information about the measured quantum system. Assuming the system Hilbert space to be separable, we show that for a given POVM, a sufficient statistic called a Lehmann-Scheffé-Bahadur statistic induces a minimal sufficient POVM. We also show that every POVM has an equivalent minimal sufficient POVM and that such a minimal sufficient POVM is unique up to relabeling neglecting null sets. We apply these results to discrete POVMs and information conservation conditions proposed by the author.

1.
E. B.
Davies
and
J.
Lewis
, “
An operational approach to quantum probability
,”
Commun. Math. Phys.
17
,
239
260
(
1970
).
2.
E. B.
Davies
,
Quantum Theory of Open Systems
(
Academic Press
,
London
,
1976
).
3.
E. L.
Lehmann
and
H.
Scheffé
, “
Completeness, similar regions, and unbiased estimation: Part I
,”
Sankhyā
10
,
305
340
(
1950
).
4.
R. R.
Bahadur
, “
Sufficiency and statistical decision functions
,”
Ann. Math. Stat.
25
,
423
462
(
1954
).
5.
H.
Martens
and
W.
de Muynck
, “
Nonideal quantum measurements
,”
Found. Phys.
20
,
255
281
(
1990
).
6.
S.
Dorofeev
and
J.
de Graaf
, “
Some maximality results for effect-valued measures
,”
Indagationes Math.
8
,
349
369
(
1997
).
7.
T.
Heinonen
, “
Optimal measurements in quantum mechanics
,”
Phys. Lett. A
346
,
77
86
(
2005
).
8.
A.
Jenčová
,
S.
Pulmannová
, and
E.
Vinceková
, “
Sharp and fuzzy observables on effect algebras
,”
Int. J. Theor. Phys.
47
,
125
148
(
2008
).
9.
Y.
Kuramochi
and
M.
Ueda
, “
Classicality condition on a system observable in a quantum measurement and a relative-entropy conservation law
,”
Phys. Rev. A
91
,
032110
(
2015
).
10.
Y.
Kuramochi
, “
Construction of the least informative observable conserved by a given quantum instrument
,”
J. Math. Phys.
56
,
092202
(
2015
).
11.
P. R.
Halmos
and
L. J.
Savage
, “
Application of the Radon-Nikodym theorem to the theory of sufficient statistics
,”
Ann. Math. Stat.
20
,
225
241
(
1949
).
12.
I.
Csiszár
, “
Information-type measures of difference of probability distributions and indirect observations
,”
Stud. Sci. Math. Hung.
2
,
299
318
(
1967
).
13.
F.
Liese
and
I.
Vajda
, “
On divergences and informations in statistics and information theory
,”
IEEE Trans. Inf. Theory
52
,
4394
4412
(
2006
).
14.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
,
79
86
(
1951
).
15.
A.
Jenčová
and
S.
Pulmannová
, “
Characterizations of commutative POV measures
,”
Found. Phys.
39
,
613
624
(
2009
).
16.
S. M.
Srivastava
,
A Course on Borel Sets
(
Springer
,
1998
).
17.
K.
Itô
,
An Introduction to Probability Theory
(
Cambridge University Press
,
1984
).
18.
V.
Bogachev
,
Measure Theory
(
Springer
,
2007
).
19.
T.
Heinosaari
and
M.
Ziman
,
The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement
(
Cambridge University Press
,
2011
).
20.
M.
Ozawa
, “
Quantum measuring processes of continuous observables
,”
J. Math. Phys.
25
,
79
87
(
1984
).
21.
A.
Kechris
,
Classical Descriptive Set Theory
(
Springer
,
1995
).
You do not currently have access to this content.