The Kochen-Specker theorem proves the inability to assign, simultaneously, noncontextual definite values to all (of a finite set of) quantum mechanical observables in a consistent manner. If one assumes that any definite values behave noncontextually, one can nonetheless only conclude that some observables (in this set) are value indefinite. In this paper, we prove a variant of the Kochen-Specker theorem showing that, under the same assumption of noncontextuality, if a single one-dimensional projection observable is assigned the definite value 1, then no one-dimensional projection observable that is incompatible (i.e., non-commuting) with this one can be assigned consistently a definite value. Unlike standard proofs of the Kochen-Specker theorem, in order to localise and show the extent of value indefiniteness, this result requires a constructive method of reduction between Kochen-Specker sets. If a system is prepared in a pure state ψ , then it is reasonable to assume that any value assignment (i.e., hidden variable model) for this system assigns the value 1 to the observable projecting onto the one-dimensional linear subspace spanned by ψ , and the value 0 to those projecting onto linear subspaces orthogonal to it. Our result can be interpreted, under this assumption, as showing that the outcome of a measurement of any other incompatible one-dimensional projection observable cannot be determined in advance, thus formalising a notion of quantum randomness.

1.
J. S.
Bell
,
Rev. Mod. Phys.
38
,
447
(
1966
).
2.
S. B.
Kochen
and
E.
Specker
,
Indiana Univ. Math. J.
17
,
59
(
1967
).
3.
D. N.
Mermin
,
Rev. Mod. Phys.
65
,
803
(
1993
).
4.
I.
Pitowsky
,
J. Math. Phys.
39
,
218
(
1998
).
5.
A.
Aspect
,
P.
Grangier
, and
G.
Roger
,
Phys. Rev. Lett.
49
,
91
(
1982
).
6.
A.
Cabello
,
J. M.
Estebaranz
, and
G.
García-Alcaine
,
Phys. Lett. A
212
,
183
(
1996
).
7.
9.
10.
A.
Peres
,
J. Phys. A: Math. Gen.
24
,
L175
(
1991
).
11.
A. A.
Abbott
,
C. S.
Calude
,
J.
Conder
, and
K.
Svozil
,
Phys. Rev. A
86
,
062109
(
2012
).
12.
A. A.
Abbott
,
C. S.
Calude
, and
K.
Svozil
,
Phys. Rev. A
89
,
032109
(
2013
).
13.
C.
de Ronde
, “
The contextual and modal character of quantum mechanics: A formal and philosophic analysis in the foundations of physics
,” Ph.D. thesis,
Utrecht University
,
2011
.
14.
P. R.
Halmos
,
Finite-Dimensional Vector Spaces
(
Springer
,
New York, Heidelberg, Berlin
,
1974
).
15.
A. M.
Gleason
,
Indiana Univ. Math. J.
6
,
885
(
1957
).
16.
M.
Fiorentino
,
C.
Santori
,
S. M.
Spillane
,
R. G.
Beausoleil
, and
W. J.
Munro
,
Phys. Rev. A
75
,
032334
(
2007
).
17.
M.
Suárez
,
Br. J. Philos. Sci.
55
,
219
(
2004
).
18.
G.
Kirchmair
,
F.
Zähringer
,
R.
Gerritsma
,
M.
Kleinmann
,
O.
Gühne
,
A.
Cabello
,
R.
Blatt
, and
C. F.
Roos
,
Nature
460
,
494
(
2009
).
19.
C.
Zu
,
Y. X.
Wang
,
D. L.
Deng
,
X. Y.
Chang
,
K.
Liu
,
P. Y.
Hou
,
H. X.
Yang
, and
L. M.
Duan
,
Phys. Rev. Lett.
109
,
150401
(
2012
).
20.
J.-A.
Larsson
,
Europhys. Lett.
58
,
799
(
2002
).
21.
X.-D.
Yu
and
D. M.
Tong
,
Phys. Rev. A
89
,
010101
(
2014
).
22.
A.
Stefanov
,
N.
Gisin
,
O.
Guinnard
,
L.
Guinnard
, and
H.
Zbinden
,
J. Mod. Opt.
47
,
595
(
2000
).
23.

Specifically, if one such Pai has the predetermined value 1, then one must obtain ai upon measurement of A; admissibility then requires that all Paj have the definite value 0 for ji.

You do not currently have access to this content.