We give a new reduction of a general diatomic molecular Hamiltonian, without modifying it near the collision set of nuclei. The resulting effective Hamiltonian is the sum of a smooth semiclassical pseudodifferential operator (the semiclassical parameter being the inverse of the square-root of the nuclear mass) and a semibounded operator localised in the elliptic region corresponding to the nuclear collision set. We also study its behaviour on exponential weights and give several applications where molecular resonances appear and can be well located.

1.
Born
,
M.
and
Oppenheimer
,
R.
, “
Zur Quantentheorie der Molekeln
,”
Ann. Phys.
84
,
457
(
1927
).
2.
Combes
,
J.-M.
,
Duclos
,
P.
, and
Seiler
,
R.
, “
The Born-Oppenheimer approximation
,” in
Rigorous Atomic and Molecular Physics
, edited by
Velo
,
G.
and
Wightman
,
A.
(
Plenum Press, New-York
,
1981
), pp.
185
212
.
3.
Combes
,
J.-M.
and
Seiler
,
R.
, “
Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians
,”
Int. J. Quantum Chem.
14
,
213
229
(
1978
).
4.
Fujiié
,
S.
,
Martinez
,
A.
, and
Watanabe
,
T.
, “
Molecular predissociation resonances at an energy-level crossing
,” preprint arXiv:1506.01785 (
2015
).
5.
Grecchi
,
V.
,
Kovarik
,
H.
,
Martinez
,
A.
,
Sacchetti
,
A.
, and
Sordoni
,
V.
, “
Resonant states for a three-body problem under an external field
,”
Asymptotic Anal.
75
,
37
77
(
2011
).
6.
Hagedorn
,
G.
, “
High order corrections to the time-dependent Born-Oppenheimer approximation I: Smooth potentials
,”
Ann. Math.
124
,
571
590
(
1986
);
Erratum,
Hagedorn
,
G.
,
Ann. Math
126
,
219
(
1987
), ISSN: 0020-2339.
7.
Hagedorn
,
G.
, “
High order corrections to the time-independent Born-Oppenheimer approximation I: Smooth potentials
,”
Ann. Inst. Henri Poincare
47
,
1
16
(
1987
).
8.
Hagedorn
,
G.
, “
High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems
,”
Commun. Math. Phys.
116
,
23
44
(
1988
).
9.
Hagedorn
,
G.
, “
High order corrections to the time-dependent Born-Oppenheimer approximation II: Coulomb systems
,”
Commun. Math. Phys.
117
(
3
),
387
403
(
1988
).
10.
Helffer
,
B.
and
Sjöstrand
,
J.
, “
Multiple wells in the semiclassical limit I
,”
Commun. Partial Differ. Equations
9
(
4
),
337
408
(
1984
).
11.
Helffer
,
B.
and
Sjöstrand
,
J.
, “
Résonances en limite semi-classique
,”
Bull. Soc. Math. Fr., Mem.
24/25
,
1
229
(
1986
).
12.
Hunziker
,
W.
, “
Distortion analyticity and molecular resonance curves
,”
Ann. Inst. Henri Poincaré, Sect. A
45
(
4
),
339
358
(
1986
), ISSN: 0020-2339.
13.
Klein
,
M.
, “
On the mathematical theory of predissociation
,”
Ann. Phys.
178
(
1
),
48
73
(
1987
).
14.
Klein
,
M.
,
Martinez
,
A.
,
Seiler
,
R.
, and
Wang
,
X. P.
, “
On the Born-Oppenheimer expansion for polyatomic molecules
,”
Commun. Math. Phys.
143
(
3
),
607
639
(
1992
).
15.
Klein
,
M.
,
Martinez
,
A.
, and
Wang
,
X. P.
, “
On the Born-Oppenheimer approximation of wave operators in molecular scattering theory
,”
Commun. Math. Phys.
152
,
73
95
(
1993
).
16.
Klein
,
M.
,
Martinez
,
A.
, and
Wang
,
X. P.
, “
On the Born-Oppenheimer approximation of diatomic wave operators II. Singular potentials
,”
J. Math. Phys.
38
(
3
),
1373
1396
(
1997
).
17.
Lahmar-Benbernou
,
A.
and
Martinez
,
A.
, “
Semiclassical asymptotics of the residues of the scattering matrix for shape resonances
,”
Asymptotic Anal.
20
,
13
38
(
1999
).
18.
Martinez
,
A.
, “
Développement asymptotiques et efffet tunnel dans l’approximation de Born-Oppenheimer
,”
Ann. Inst. Henri Poincare
49
,
239
257
(
1989
), ISSN: 0246-0211.
19.
Martinez
,
A.
, “
Estimates on complex interactions in phase space
,”
Math. Nachr.
167
,
203
254
(
1994
).
20.
Martinez
,
A.
,
An Introduction to Semiclassical and Microlocal Analysis
,
Universitext
(
Springer-Verlag
,
New York
,
2002
).
21.
Martinez
,
A.
and
Messerdi
,
B.
, “
Resonances of diatomic molecules in the Born-Oppenheimer approximation
,”
Commun. Partial Differ. Equations
19
,
1139
1162
(
1994
).
22.
Martinez
,
A.
and
Sordoni
,
V.
, “
A general reduction scheme for the time-dependent Born-Oppenheimer approximation
,”
C. R. Acad. Sci. Paris, Ser. I
334
,
185
188
(
2002
).
23.
Martinez
,
A.
and
Sordoni
,
V.
, “
Twisted pseudodifferential calculus and application to the quantum evolution of molecules
,”
Mem. Am. Math. Soc.
200
(
936
),
1
82
(
2009
).
24.
Raphaelian
,
A.
, “
Ion-atom scattering within a Born-Oppenheimer framework
,” Ph.D. dissertation (
Technische Universität Berlin
,
1986
).
25.
Sordoni
,
V.
, “
Born-Oppenheimer expansion for diatomic molecules: Excited states
,”
C. R. Acad. Sci., Ser. I
320
(
9
),
1091
1097
(
1995
).
You do not currently have access to this content.