We give a new reduction of a general diatomic molecular Hamiltonian, without modifying it near the collision set of nuclei. The resulting effective Hamiltonian is the sum of a smooth semiclassical pseudodifferential operator (the semiclassical parameter being the inverse of the square-root of the nuclear mass) and a semibounded operator localised in the elliptic region corresponding to the nuclear collision set. We also study its behaviour on exponential weights and give several applications where molecular resonances appear and can be well located.
REFERENCES
1.
Born
, M.
and Oppenheimer
, R.
, “Zur Quantentheorie der Molekeln
,” Ann. Phys.
84
, 457
(1927
).2.
Combes
, J.-M.
, Duclos
, P.
, and Seiler
, R.
, “The Born-Oppenheimer approximation
,” in Rigorous Atomic and Molecular Physics
, edited by Velo
, G.
and Wightman
, A.
(Plenum Press, New-York
, 1981
), pp. 185
–212
.3.
Combes
, J.-M.
and Seiler
, R.
, “Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians
,” Int. J. Quantum Chem.
14
, 213
–229
(1978
).4.
Fujiié
, S.
, Martinez
, A.
, and Watanabe
, T.
, “Molecular predissociation resonances at an energy-level crossing
,” preprint arXiv:1506.01785 (2015
).5.
Grecchi
, V.
, Kovarik
, H.
, Martinez
, A.
, Sacchetti
, A.
, and Sordoni
, V.
, “Resonant states for a three-body problem under an external field
,” Asymptotic Anal.
75
, 37
–77
(2011
).6.
Hagedorn
, G.
, “High order corrections to the time-dependent Born-Oppenheimer approximation I: Smooth potentials
,” Ann. Math.
124
, 571
–590
(1986
);Erratum,
Hagedorn
, G.
, Ann. Math
126
, 219
(1987
), ISSN: 0020-2339.7.
Hagedorn
, G.
, “High order corrections to the time-independent Born-Oppenheimer approximation I: Smooth potentials
,” Ann. Inst. Henri Poincare
47
, 1
–16
(1987
).8.
Hagedorn
, G.
, “High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems
,” Commun. Math. Phys.
116
, 23
–44
(1988
).9.
Hagedorn
, G.
, “High order corrections to the time-dependent Born-Oppenheimer approximation II: Coulomb systems
,” Commun. Math. Phys.
117
(3
), 387
–403
(1988
).10.
Helffer
, B.
and Sjöstrand
, J.
, “Multiple wells in the semiclassical limit I
,” Commun. Partial Differ. Equations
9
(4
), 337
–408
(1984
).11.
Helffer
, B.
and Sjöstrand
, J.
, “Résonances en limite semi-classique
,” Bull. Soc. Math. Fr., Mem.
24/25
, 1
–229
(1986
).12.
Hunziker
, W.
, “Distortion analyticity and molecular resonance curves
,” Ann. Inst. Henri Poincaré, Sect. A
45
(4
), 339
–358
(1986
), ISSN: 0020-2339.13.
Klein
, M.
, “On the mathematical theory of predissociation
,” Ann. Phys.
178
(1
), 48
–73
(1987
).14.
Klein
, M.
, Martinez
, A.
, Seiler
, R.
, and Wang
, X. P.
, “On the Born-Oppenheimer expansion for polyatomic molecules
,” Commun. Math. Phys.
143
(3
), 607
–639
(1992
).15.
Klein
, M.
, Martinez
, A.
, and Wang
, X. P.
, “On the Born-Oppenheimer approximation of wave operators in molecular scattering theory
,” Commun. Math. Phys.
152
, 73
–95
(1993
).16.
Klein
, M.
, Martinez
, A.
, and Wang
, X. P.
, “On the Born-Oppenheimer approximation of diatomic wave operators II. Singular potentials
,” J. Math. Phys.
38
(3
), 1373
–1396
(1997
).17.
Lahmar-Benbernou
, A.
and Martinez
, A.
, “Semiclassical asymptotics of the residues of the scattering matrix for shape resonances
,” Asymptotic Anal.
20
, 13
–38
(1999
).18.
Martinez
, A.
, “Développement asymptotiques et efffet tunnel dans l’approximation de Born-Oppenheimer
,” Ann. Inst. Henri Poincare
49
, 239
–257
(1989
), ISSN: 0246-0211.19.
Martinez
, A.
, “Estimates on complex interactions in phase space
,” Math. Nachr.
167
, 203
–254
(1994
).20.
Martinez
, A.
, An Introduction to Semiclassical and Microlocal Analysis
, Universitext
(Springer-Verlag
, New York
, 2002
).21.
Martinez
, A.
and Messerdi
, B.
, “Resonances of diatomic molecules in the Born-Oppenheimer approximation
,” Commun. Partial Differ. Equations
19
, 1139
–1162
(1994
).22.
Martinez
, A.
and Sordoni
, V.
, “A general reduction scheme for the time-dependent Born-Oppenheimer approximation
,” C. R. Acad. Sci. Paris, Ser. I
334
, 185
–188
(2002
).23.
Martinez
, A.
and Sordoni
, V.
, “Twisted pseudodifferential calculus and application to the quantum evolution of molecules
,” Mem. Am. Math. Soc.
200
(936
), 1
–82
(2009
).24.
Raphaelian
, A.
, “Ion-atom scattering within a Born-Oppenheimer framework
,” Ph.D. dissertation (Technische Universität Berlin
, 1986
).25.
Sordoni
, V.
, “Born-Oppenheimer expansion for diatomic molecules: Excited states
,” C. R. Acad. Sci., Ser. I
320
(9
), 1091
–1097
(1995
).© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.