Harmonically modulated complex solitary waves which are a generalized type of envelope soliton (herein called oscillatory solitons) are studied for the two U(1)-invariant integrable generalizations of the modified Korteweg-de Vries equation, given by the Hirota equation and the Sasa-Satsuma equation. A bilinear formulation of these two equations is used to derive the oscillatory 1-soliton and 2-soliton solutions, which are then written out in a physical form parameterized in terms of their speed, modulation frequency, and phase. Depending on the modulation frequency, the speeds of oscillatory waves (1-solitons) can be positive, negative, or zero, in contrast to the strictly positive speed of ordinary solitons. When the speed is zero, an oscillatory wave is a time-periodic standing wave. Properties of the amplitude and phase of oscillatory 1-solitons are derived. Oscillatory 2-solitons are graphically illustrated to describe collisions between two oscillatory 1-solitons in the case when the speeds are distinct. In the special case of equal speeds, oscillatory 2-solitons are shown to reduce to harmonically modulated breather waves.

1.
N. J.
Zabusky
, in
Proceedings of the Symposium on Nonlinear Partial Differential Equations
, edited by
W.
Ames
(
Academic Press
,
1967
).
2.
T.
Kakutani
and
H.
Ono
,
J. Phys. Soc. Jpn.
26
,
1305
1318
(
1969
).
3.
J. H. B.
Nijhof
and
G. H. M.
Roelofs
,
J. Phys. A: Math. Gen.
25
,
2403
2416
(
1992
).
4.
S. Y.
Sakovich
,
J. Phys. Soc. Jpn.
66
,
2527
2529
(
1997
).
5.
R.
Hirota
,
J. Math. Phys.
14
,
805
809
(
1973
).
6.
N.
Sasa
and
J.
Satsuma
,
J. Phys. Soc. Jpn.
60
,
409
417
(
1991
).
7.
M. J.
Potasek
,
Phys. Lett. A
60
,
449
452
(
1991
).
8.
S. B.
Cavalcanti
,
J. C.
Cressoni
,
H. R.
da Cruz
, and
A. S.
Gouvei-Neto
,
Phys. Rev. A
43
,
6162
6165
(
1991
).
9.
Y. V.
Sedletskii
,
J. Exp. Theor. Phys.
97
,
180
193
(
2003
).
10.
A. V.
Slunyaev
,
J. Exp. Theor. Phys.
101
,
926
941
(
2005
).
11.
S. C.
Anco
,
N. T.
Ngatat
, and
M.
Willoughby
,
Physica D
240
,
1378
1394
(
2011
).
12.
C.
Gilson
,
J.
Hietarinta
,
J.
Nimmo
, and
Y.
Ohta
,
Phys. Rev. E
68
,
016614
(
2003
).
13.
Y.
Tao
and
J.
He
,
Phys. Rev. E
85
,
026601
(
2012
).
14.
R.
Hirota
,
The Direct Method in Soliton Theory
,
Cambridge Tracts in Mathematics
Vol.
155
(
Cambridge University Press
,
1992
).
15.
R.
Hirota
,
J. Phys. Soc. Jpn.
22
,
1456
1458
(
1972
).
16.
D.
Mihlache
,
L.
Torner
,
F.
Moldoveanu
,
N.-C.
Panoiu
, and
N.
Truta
,
J. Phys. A: Math. Gen.
26
,
L757
L765
(
1993
).
17.
D.
Mihlache
,
N.-C.
Panoiu
,
F.
Moldoveanu
, and
D.-M.
Baboiu
,
J. Phys. A: Math. Gen.
27
,
6177
6189
(
1994
).
18.
M.
Wadati
,
J. Phys. Soc. Jpn.
34
,
1289
1296
(
1973
).
19.
S. C.
Anco
,
A. S.
Mia
, and
M. R.
Willoughby
, “
Oscillatory solitons of U(1)-invariant mKdV equations. II. Envelope speed and temporal frequency
,”
J. Math. Phys.
(submitted).
You do not currently have access to this content.