We examine the analytical structure of the nonlinear Liénard oscillator and show that it is a bi-Hamiltonian system depending upon the choice of the coupling parameters. While one has been recently studied in the context of a quantized momentum-dependent mass system, the other Hamiltonian also reflects a similar feature in the mass function and also depicts an isotonic character. We solve for such a Hamiltonian and give the complete solution in terms of a confluent hypergeometric function.
REFERENCES
1.
2.
B. H.
Bransden
and C. J.
Joachain
, Physics of Atoms and Molecules
, 2nd ed. (Prentice Hall
, London
, 2003
), Chap. 2.3.
R.
Loudon
, Am. J. Phys.
27
, 649
(1959
). 4.
H. N.
Núnez-Yépez
, C. A.
Vargas
, and A. L.
Salas-Brito
, J. Phys. A: Math. Gen.
21
, L651
(1988
);H. N.
Núnez-Yépez
and A. L.
Salas-Brito
, Eur. J. Phys.
8
, 307
(1987
);H. N.
Núnez-Yépez
andA. L.
Salas-Brito
, Eur. J. Phys.
8
, 189
(1987
);H. N.
Núnez-Yépez
, E.
Guillaumyn-Espna
, R. P.
Martnez-y-Romero
, and A. L.
Salas-Brito
, “Simple quantum systems in the momentum representation
,” Revista Mexicana de Fisica
47
, 98
(2001
);e-print arXiv:physics/000103v2;
5.
V.
Chithiika Ruby
, M.
Senthilvelan
, and M.
Lakshmanan
, J. Phys. A: Math. Theor.
45
, 382002
(2012
);See also
, V. K.
Chandrasekhar
, M.
Senthilvelan
, and M.
Lakshmanan
, Phys. Rev. E
72
, 066203
(2005
). 6.
Z. E.
Musielak
, D.
Roy
, and L. D.
Swift
, Chaos, Solitons Fractals
38
, 894
-902
(2008
). 7.
A.
Ghose Choudhury
, P.
Guha
, and B.
Khanra
, J. Math. Anal. Appl.
360
(2
), 651
-664
(2009
). 8.
M. C.
Nucci
and K. M.
Tamizhmani
, J. Nonlinear Math. Phys.
17
, 167
-178
(2010
). 9.
M. C.
Nucci
and P. G. L.
Leach
, J. Phys. A: Math. Gen.
37
, 7743
-7753
(2004
). 10.
N.
Saad
, R. L.
Hall
, H.
Çiftçi
, and O.
Yeşiltas
, Adv. Math. Phys.
2011
, 750168
. 11.
Y.
Weissman
and J.
Jortner
, Phys. Lett. A
70
, 177
(1979
). 12.
M. R.
Geller
and W.
Kohn
, Phy. Rev. Lett.
70
, 3103
(1993
). 13.
L.
Serra
and E.
Lipparini
, Europhys. Lett.
40
, 667
(1997
). 14.
M.
Barranco
, M.
Pi
, S. M.
Gatica
, E. S.
Herńandez
, and J.
Navarro
, Phys. Rev. B
56
, 8997
(1997
). 15.
B.
Bagchi
, J. Phys. A: Math. Theor.
40
, F1041
(2007
);B.
Bagchi
, e-print arXiv:0706.0607 [quant-ph];B.
Bagchi
, S.
Das
, S.
Ghosh
, and S.
Poria
, J. Phys. A: Math. Theor.
46
, 032001
(2013
);B.
Bagchi
, P.
Gorain
, C.
Quesne
, and R.
Roychoudhury
, Mod. Phys.Lett. A
19
, 2765
(2004
). 16.
J. F.
Cariñena
, M. F.
Rañada
, and M.
Santander
, Ann. Phys.
322
, 2249
(2007
);J. F.
Cariñena
,M. F.
Rañada
, andM.
Santander
, “Two important examples of nonlinear oscillators
,” in Proceedings of the 10th International Conference in Modern Group Analysis, Larnaca, Chipre
edited by N. H.
Ibragimov
,Ch.
Sophocleous
, andP. A.
Damianou
(University of Cyprus, Larcana Cyprus
, 2005
), pp. 39
-46
, Also e-print arXiv:math-ph/0505028;J. F.
Carinena
, M. F.
Rañada
, and M.
Santander
, Rep. Math. Phys.
54
, 285
(2004
). 17.
S.
Cruz y Cruz
, J.
Negro
, and L. M.
Nieto
, Phys. Letts. A
369
, 400
(2007
);S.
Cruz y Cruz
and O.
Rosas-Ortiz
, J. Phys. A: Math. Theor.
42
, 185205
(2009
);S.
Cruz y Cruz
and O.
Rosas-Ortiz
, “Lagrange equations and spectrum generators algebras of mechanical systems with position-dependent mass
,” SIGMA
9
, 004
(2013
);e-print arXiv:1208.2300.
18.
B.
Midya
and B.
Roy
, J. Phys. A: Math. Theor.
42
, 285301
(2009
). 19.
A.
Ghose Choudhury
and P.
Guha
, J. Phys. A: Math. Theor.
46
, 165202
(2013
). 20.
O.
Von Roos
, Phys. Rev. B
27
, 7547
-7552
(1983
). 21.
A.
Bhattacharjie
and E. C. G.
Sudarshan
, Nuovo Cimento
25
, 864
(1962
);G.
Levai
, J. Phys. A: Math. Gen.
22
, 689
(1989
);S.
Dey
, A.
Fring
, and B.
Khantoul
, “Hermitian versus non-Hermitian representations for minimal length uncertainty relations
,” JPA: Math-Theor
46
, 335304
(2013
);e-print arXiv:1302.4571 [quant-ph].
© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.