We examine the analytical structure of the nonlinear Liénard oscillator and show that it is a bi-Hamiltonian system depending upon the choice of the coupling parameters. While one has been recently studied in the context of a quantized momentum-dependent mass system, the other Hamiltonian also reflects a similar feature in the mass function and also depicts an isotonic character. We solve for such a Hamiltonian and give the complete solution in terms of a confluent hypergeometric function.

1.
J. R.
Taylor
,
Scattering Theory
(
Wiley
,
New York
,
1972
).
2.
B. H.
Bransden
and
C. J.
Joachain
,
Physics of Atoms and Molecules
, 2nd ed. (
Prentice Hall
,
London
,
2003
), Chap. 2.
3.
R.
Loudon
,
Am. J. Phys.
27
,
649
(
1959
).
4.
H. N.
Núnez-Yépez
,
C. A.
Vargas
, and
A. L.
Salas-Brito
,
J. Phys. A: Math. Gen.
21
,
L651
(
1988
);
H. N.
Núnez-Yépez
and
A. L.
Salas-Brito
,
Eur. J. Phys.
8
,
307
(
1987
);
H. N.
Núnez-Yépez
and
A. L.
Salas-Brito
,
Eur. J. Phys.
8
,
189
(
1987
);
H. N.
Núnez-Yépez
,
E.
Guillaumyn-Espna
,
R. P.
Martnez-y-Romero
, and
A. L.
Salas-Brito
, “
Simple quantum systems in the momentum representation
,”
Revista Mexicana de Fisica
47
,
98
(
2001
);
T. D.
Imbo
and
U. P.
Sukhatme
,
Phys. Rev. Lett.
54
,
2184
(
1985
).
[PubMed]
5.
V.
Chithiika Ruby
,
M.
Senthilvelan
, and
M.
Lakshmanan
,
J. Phys. A: Math. Theor.
45
,
382002
(
2012
);
See also
,
V. K.
Chandrasekhar
,
M.
Senthilvelan
, and
M.
Lakshmanan
,
Phys. Rev. E
72
,
066203
(
2005
).
6.
Z. E.
Musielak
,
D.
Roy
, and
L. D.
Swift
,
Chaos, Solitons Fractals
38
,
894
-
902
(
2008
).
7.
A.
Ghose Choudhury
,
P.
Guha
, and
B.
Khanra
,
J. Math. Anal. Appl.
360
(
2
),
651
-
664
(
2009
).
8.
M. C.
Nucci
and
K. M.
Tamizhmani
,
J. Nonlinear Math. Phys.
17
,
167
-
178
(
2010
).
9.
M. C.
Nucci
and
P. G. L.
Leach
,
J. Phys. A: Math. Gen.
37
,
7743
-
7753
(
2004
).
10.
N.
Saad
,
R. L.
Hall
,
H.
Çiftçi
, and
O.
Yeşiltas
,
Adv. Math. Phys.
2011
,
750168
.
11.
Y.
Weissman
and
J.
Jortner
,
Phys. Lett. A
70
,
177
(
1979
).
12.
M. R.
Geller
and
W.
Kohn
,
Phy. Rev. Lett.
70
,
3103
(
1993
).
13.
L.
Serra
and
E.
Lipparini
,
Europhys. Lett.
40
,
667
(
1997
).
14.
M.
Barranco
,
M.
Pi
,
S. M.
Gatica
,
E. S.
Herńandez
, and
J.
Navarro
,
Phys. Rev. B
56
,
8997
(
1997
).
15.
B.
Bagchi
,
J. Phys. A: Math. Theor.
40
,
F1041
(
2007
);
B.
Bagchi
, e-print arXiv:0706.0607 [quant-ph];
B.
Bagchi
,
S.
Das
,
S.
Ghosh
, and
S.
Poria
,
J. Phys. A: Math. Theor.
46
,
032001
(
2013
);
B.
Bagchi
,
P.
Gorain
,
C.
Quesne
, and
R.
Roychoudhury
,
Mod. Phys.Lett. A
19
,
2765
(
2004
).
16.
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
,
Ann. Phys.
322
,
2249
(
2007
);
J. F.
Cariñena
,
M. F.
Rañada
, and
M.
Santander
, “
Two important examples of nonlinear oscillators
,” in
Proceedings of the 10th International Conference in Modern Group Analysis, Larnaca, Chipre
edited by
N. H.
Ibragimov
,
Ch.
Sophocleous
, and
P. A.
Damianou
(
University of Cyprus, Larcana Cyprus
,
2005
), pp.
39
-
46
, Also e-print arXiv:math-ph/0505028;
J. F.
Carinena
,
M. F.
Rañada
, and
M.
Santander
,
Rep. Math. Phys.
54
,
285
(
2004
).
17.
S.
Cruz y Cruz
,
J.
Negro
, and
L. M.
Nieto
,
Phys. Letts. A
369
,
400
(
2007
);
S.
Cruz y Cruz
and
O.
Rosas-Ortiz
,
J. Phys. A: Math. Theor.
42
,
185205
(
2009
);
S.
Cruz y Cruz
and
O.
Rosas-Ortiz
, “
Lagrange equations and spectrum generators algebras of mechanical systems with position-dependent mass
,”
SIGMA
9
,
004
(
2013
);
18.
B.
Midya
and
B.
Roy
,
J. Phys. A: Math. Theor.
42
,
285301
(
2009
).
19.
A.
Ghose Choudhury
and
P.
Guha
,
J. Phys. A: Math. Theor.
46
,
165202
(
2013
).
20.
O.
Von Roos
,
Phys. Rev. B
27
,
7547
-
7552
(
1983
).
21.
A.
Bhattacharjie
and
E. C. G.
Sudarshan
,
Nuovo Cimento
25
,
864
(
1962
);
G.
Levai
,
J. Phys. A: Math. Gen.
22
,
689
(
1989
);
S.
Dey
,
A.
Fring
, and
B.
Khantoul
, “
Hermitian versus non-Hermitian representations for minimal length uncertainty relations
,”
JPA: Math-Theor
46
,
335304
(
2013
);
e-print arXiv:1302.4571 [quant-ph].
You do not currently have access to this content.