We study how the eigenvalues of a magnetic Schrödinger operator of Aharonov-Bohm type depend on the singularities of its magnetic potential. We consider a magnetic potential defined everywhere in ℝ2 except at a finite number of singularities, so that the associated magnetic field is zero. On a fixed planar domain, we define the corresponding magnetic Hamiltonian with Dirichlet boundary conditions and study its eigenvalues as functions of the singularities. We prove that these functions are continuous, and in some cases even analytic. We sketch the connection of this eigenvalue problem to the problem of finding spectral minimal partitions of the domain.
REFERENCES
1.
Y.
Aharonov
and D.
Bohm
, “Significance of electromagnetic potentials in the quantum theory
,” Phys. Rev.
115
, 485
–491
(1959
). 2.
B.
Alziary
, J.
Fleckinger-Pellé
, and P.
Takáč
, “Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in ℝ2
,” Math. Methods Appl. Sci.
26
(13
), 1093
–1136
(2003
). 3.
V.
Bonnaillie-Noël
and B.
Helffer
, “Numerical analysis of nodal sets for eigenvalues of Aharonov-Bohm Hamiltonians on the square with application to minimal partitions
,” Exp. Math.
20
(3
), 304
–322
(2011
). 4.
V.
Bonnaillie-Noël
, B.
Helffer
, and T.
Hoffmann-Ostenhof
, “Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions
,” J. Phys. A
42
(18
), 185203
(2009
). 5.
V.
Bonnaillie-Noël
and C.
Léna
, “Spectral minimal partitions of a sector
,” Discrete Contin. Dyn. Syst., Ser. B
19
(1
), 27
–53
(2014
). 6.
V.
Bonnaillie-Noël
, B.
Noris
, M.
Nys
, and S.
Terracini
, “On the eigenvalues of Aharonov-Bohm operators with varying poles
,” Analysis & PDE
7
(6
), 1365
–1395
(2014
). 7.
B.
Helffer
, M.
Hoffmann-Ostenhof
, T.
Hoffmann-Ostenhof
, and M. P.
Owen
, “Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains
,” Commun. Math. Phys.
202
(3
), 629
–649
(1999
). 8.
B.
Helffer
and T.
Hoffmann-Ostenhof
, “On a magnetic characterization of spectral minimal partitions
,” J. Eur. Math. Soc. (JEMS)
15
(6
), 2081
–2092
(2013
). 9.
B.
Helffer
, T.
Hoffmann-Ostenhof
, and S.
Terracini
, “Nodal domains and spectral minimal partitions
,” Ann. Inst. Henri Poincaré Anal. Non Linéaire
26
(1
), 101
–138
(2009
). 10.
L.
Hillairet
and C.
Judge
, “The eigenvalues of the Laplacian on domains with small slits
,” Trans. Am. Math. Soc.
362
(12
), 6231
–6259
(2010
). 11.
T.
Kato
, Perturbation Theory for Linear Operators
, 2nd ed. (Springer-Verlag
, Berlin
, 1976
).12.
A.
Laptev
and T.
Weidl
, “Hardy inequalities for magnetic Dirichlet forms
,” in Mathematical Results in Quantum Mechanics (Prague, 1998)
(Birkhäuser
, Basel
, 1999
), pp. 299
–305
.13.
H.
Leinfelder
, “Gauge invariance of Schrödinger operators and related spectral properties
,” J. Oper. Theory
9
(1
), 163
–179
(1983
).14.
M.
Melgaard
, E.-M.
Ouhabaz
, and G.
Rozenblum
, “Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians
,” Ann. Henri Poincaré
5
(5
), 979
–1012
(2004
). 15.
B.
Noris
and S.
Terracini
, “Nodal sets of magnetic Schrödinger operators of Aharonov-Bohm type and energy minimizing partitions
,” Indiana Univ. Math. J.
59
(4
), 1361
–1403
(2010
). 16.
M.
Reed
and B.
Simon
, Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness
(Academic Press
, New York
, 1975
).© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.