We study how the eigenvalues of a magnetic Schrödinger operator of Aharonov-Bohm type depend on the singularities of its magnetic potential. We consider a magnetic potential defined everywhere in ℝ2 except at a finite number of singularities, so that the associated magnetic field is zero. On a fixed planar domain, we define the corresponding magnetic Hamiltonian with Dirichlet boundary conditions and study its eigenvalues as functions of the singularities. We prove that these functions are continuous, and in some cases even analytic. We sketch the connection of this eigenvalue problem to the problem of finding spectral minimal partitions of the domain.

1.
Y.
Aharonov
and
D.
Bohm
, “
Significance of electromagnetic potentials in the quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
).
2.
B.
Alziary
,
J.
Fleckinger-Pellé
, and
P.
Takáč
, “
Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in ℝ2
,”
Math. Methods Appl. Sci.
26
(
13
),
1093
1136
(
2003
).
3.
V.
Bonnaillie-Noël
and
B.
Helffer
, “
Numerical analysis of nodal sets for eigenvalues of Aharonov-Bohm Hamiltonians on the square with application to minimal partitions
,”
Exp. Math.
20
(
3
),
304
322
(
2011
).
4.
V.
Bonnaillie-Noël
,
B.
Helffer
, and
T.
Hoffmann-Ostenhof
, “
Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions
,”
J. Phys. A
42
(
18
),
185203
(
2009
).
5.
V.
Bonnaillie-Noël
and
C.
Léna
, “
Spectral minimal partitions of a sector
,”
Discrete Contin. Dyn. Syst., Ser. B
19
(
1
),
27
53
(
2014
).
6.
V.
Bonnaillie-Noël
,
B.
Noris
,
M.
Nys
, and
S.
Terracini
, “
On the eigenvalues of Aharonov-Bohm operators with varying poles
,”
Analysis & PDE
7
(
6
),
1365
1395
(
2014
).
7.
B.
Helffer
,
M.
Hoffmann-Ostenhof
,
T.
Hoffmann-Ostenhof
, and
M. P.
Owen
, “
Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains
,”
Commun. Math. Phys.
202
(
3
),
629
649
(
1999
).
8.
B.
Helffer
and
T.
Hoffmann-Ostenhof
, “
On a magnetic characterization of spectral minimal partitions
,”
J. Eur. Math. Soc. (JEMS)
15
(
6
),
2081
2092
(
2013
).
9.
B.
Helffer
,
T.
Hoffmann-Ostenhof
, and
S.
Terracini
, “
Nodal domains and spectral minimal partitions
,”
Ann. Inst. Henri Poincaré Anal. Non Linéaire
26
(
1
),
101
138
(
2009
).
10.
L.
Hillairet
and
C.
Judge
, “
The eigenvalues of the Laplacian on domains with small slits
,”
Trans. Am. Math. Soc.
362
(
12
),
6231
6259
(
2010
).
11.
T.
Kato
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1976
).
12.
A.
Laptev
and
T.
Weidl
, “
Hardy inequalities for magnetic Dirichlet forms
,” in
Mathematical Results in Quantum Mechanics (Prague, 1998)
(
Birkhäuser
,
Basel
,
1999
), pp.
299
305
.
13.
H.
Leinfelder
, “
Gauge invariance of Schrödinger operators and related spectral properties
,”
J. Oper. Theory
9
(
1
),
163
179
(
1983
).
14.
M.
Melgaard
,
E.-M.
Ouhabaz
, and
G.
Rozenblum
, “
Negative discrete spectrum of perturbed multivortex Aharonov-Bohm Hamiltonians
,”
Ann. Henri Poincaré
5
(
5
),
979
1012
(
2004
).
15.
B.
Noris
and
S.
Terracini
, “
Nodal sets of magnetic Schrödinger operators of Aharonov-Bohm type and energy minimizing partitions
,”
Indiana Univ. Math. J.
59
(
4
),
1361
1403
(
2010
).
16.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness
(
Academic Press
,
New York
,
1975
).
You do not currently have access to this content.