The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.
REFERENCES
1.
Barletti
, L.
, “Quantum fluid models for nanoelectronics
,” Commun. Appl. Ind. Math.
3
(1
), e
–417
(2012
).2.
Barletti
, L.
and Cintolesi
, C.
, “Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics
,” J. Stat. Phys.
148
(2
), 353
–386
(2012
).3.
Barletti
, L.
and Frosali
, G.
, “Diffusive limit of the two-band k·p model for semiconductors
,” J. Stat. Phys.
139
, 280
–306
(2010
).4.
Barletti
, L.
, Frosali
, G.
, and Morandi
, O.
, “Kinetic and hydrodynamic models for multiband quantum transport in crystals
,” in Modern Mathematical Models and Numerical Techniques for Multiband Effective Mass Approximations
, edited by M.
Ehrhardt
and T.
Koprucki
(Springer-Verlag
, 2014
).5.
Bhatnagar
, P. L.
, Gross
, E. P.
, and Krook
, M.
, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,” Phys. Rev.
94
, 511
–525
(1954
).6.
Bialynicki-Birula
, I.
, “Hydrodynamic form of the Weyl equation
,” Acta Phys. Pol. B
26
, 1201
–1208
(1995
).7.
Camiola
, V. D.
, Mascali
, G.
, and Romano
, V.
, “Simulation of a double-gate MOSFET by a non-parabolic energy-transport subband model for semiconductors based on the maximum entropy principle
,” Math. Comput. Modell.
58
, 321
–343
(2013
).8.
Camiola
, V. D.
and Romano
, V.
, “Hydrodynamical model for charge transport in graphene
,” J. Stat. Phys. (unpublished).9.
Cercignani
, C.
, The Boltzmann Equation and its Applications
(Springer Verlag
, New York
, 1988
).10.
Castro Neto
, A. H.
, Guinea
, F.
, Peres
, N. M. R.
, Novoselov
, K. S.
, and Geim
, A. K.
, “The electronic properties of graphene
,” Rev. Mod. Phys.
81
, 109
–162
(2009
).11.
Cheianov
, V. V.
, Fal'ko
, V.
, and Altshuler
, B. L.
, “The focusing of electron flow and a Veselago lens in graphene
,” Science
315
, 1252
–1255
(2007
).12.
Chen
, G-Q.
, “Euler equations and related hyperbolic conservation laws
,” in Handbook of Differential Equations: Evolutionary Equations
, edited by C. M.
Dafermos
and E.
Feireis
(Elsevier B.V.
, Amsterdam
, 2005
), Vol. 2
.13.
El Hajj
, R.
and Méhats
, F.
, “Analysis of models for quantum transport of electrons in graphene layers
,” Math. Models Methods Appl. Sci.
(published online).14.
Fox
, L.
and Parker
, I. B.
, Chebyshev Polynomials in Numerical Analysis
(Oxford University Press
, London
, 1968
).15.
Jüngel
, A.
, Krause
, S.
, and Pietra
, P.
, “Diffusive semiconductor moment equations using Fermi-Dirac statistics
,” Z. Angew. Math. Phys.
62
(4
), 623
–639
(2011
).16.
Jüngel
, A.
and Zamponi
, N.
, “Two spinorial drift-diffusion models for quantum electron transport in graphene
,” Commun. Math. Sci.
11
(3
), 807
–830
(2013
).17.
La Rosa
, S.
, Mascali
, G.
, and Romano
, V.
, “Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: The 8-moment case
,” SIAM J. Appl. Math.
70
(3
), 710
–734
(2009
).18.
Levermore
, C. D.
, “Moment closure hierarchies for kinetic theories
,” J. Stat. Phys.
83
(5/6
), 1021
–1065
(1996
).19.
20.
Lichtenberger
, P.
, Morandi
, O.
, and Schürrer
, F.
, “High field transport and optical phonon scattering in graphene
,” Phys. Rew. B
84
, 045406
–7
(2011
).21.
Lundstrom
, M.
, Fundamentals of Carrier Transport
(Cambridge University Press
, Cambridge
, 2000
).22.
Morandi
, O.
, “Wigner-function formalism applied to the Zener band transition in a semiconductor
,” Phys. Rev. B
80
, 024301
–12
(2009
).23.
Morandi
, O.
and Schürrer
, F.
, “Wigner model for quantum transport in graphene
,” J. Phys. A: Math. Theor.
44
, 265301
(2011
).24.
Müller
, M.
, Schmalian
, J.
, and Fritz
, L.
, “Graphene: A nearly perfect fluid
,” Phys. Rev. Lett.
103
, 025301
–4
(2009
).25.
Svintsov
, D.
, Vyurkov
, V.
, Yurchenko
, S.
, Otsuji
, T.
, and Ryzhii
, V.
, “Hydrodynamic model for electron-hole plasma in graphene
,” J. Appl. Phys.
111
, 083715
(2012
).26.
27.
Trovato
, M.
and Reggiani
, L.
, “Quantum maximum entropy principle for a system of identical particles
,” Phys. Rev. E
81
, 021119
–11
(2010
).28.
Wood
, D. C.
, “The computation of polylogarithms
,” Technical Report No. 15/92, University of Kent Computing Laboratory, 1992
.29.
30.
Zamponi
, N.
, “Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization
,” Kinet. Relat. Mod.
5
(1
), 203
–221
(2012
).31.
Zamponi
, N.
and Barletti
, L.
, “Quantum electronic transport in graphene: A kinetic and fluid-dynamical approach
,” Math. Methods Appl. Sci.
34
, 807
–818
(2011
).32.
We are working with dimensionless Wigner functions and the constant 1/(2πℏ)2 is necessary in order to compute physical moments.4
33.
Although we have used the same notation for ν⊥ and
${\bm w}_\perp$
, the former denotes a rotated unit vector, the latter an orthogonal projection.34.
It is necessary to distinguish three cases: when both the level lines n = nm and n = nM are in the region A < −B, when both are in the region A > −B, and when n = nm is in the first region while n = nM is in the second one. Note, in fact, that the level lines of n cannot cross (asymptotically) the critical line A = −B.
© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.