The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

1.
Barletti
,
L.
, “
Quantum fluid models for nanoelectronics
,”
Commun. Appl. Ind. Math.
3
(
1
),
e
417
(
2012
).
2.
Barletti
,
L.
and
Cintolesi
,
C.
, “
Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics
,”
J. Stat. Phys.
148
(
2
),
353
386
(
2012
).
3.
Barletti
,
L.
and
Frosali
,
G.
, “
Diffusive limit of the two-band k·p model for semiconductors
,”
J. Stat. Phys.
139
,
280
306
(
2010
).
4.
Barletti
,
L.
,
Frosali
,
G.
, and
Morandi
,
O.
, “
Kinetic and hydrodynamic models for multiband quantum transport in crystals
,” in
Modern Mathematical Models and Numerical Techniques for Multiband Effective Mass Approximations
, edited by
M.
Ehrhardt
and
T.
Koprucki
(
Springer-Verlag
,
2014
).
5.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, “
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
,”
Phys. Rev.
94
,
511
525
(
1954
).
6.
Bialynicki-Birula
,
I.
, “
Hydrodynamic form of the Weyl equation
,”
Acta Phys. Pol. B
26
,
1201
1208
(
1995
).
7.
Camiola
,
V. D.
,
Mascali
,
G.
, and
Romano
,
V.
, “
Simulation of a double-gate MOSFET by a non-parabolic energy-transport subband model for semiconductors based on the maximum entropy principle
,”
Math. Comput. Modell.
58
,
321
343
(
2013
).
8.
Camiola
,
V. D.
and
Romano
,
V.
, “
Hydrodynamical model for charge transport in graphene
,” J. Stat. Phys. (unpublished).
9.
Cercignani
,
C.
,
The Boltzmann Equation and its Applications
(
Springer Verlag
,
New York
,
1988
).
10.
Castro Neto
,
A. H.
,
Guinea
,
F.
,
Peres
,
N. M. R.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
11.
Cheianov
,
V. V.
,
Fal'ko
,
V.
, and
Altshuler
,
B. L.
, “
The focusing of electron flow and a Veselago lens in graphene
,”
Science
315
,
1252
1255
(
2007
).
12.
Chen
,
G-Q.
, “
Euler equations and related hyperbolic conservation laws
,” in
Handbook of Differential Equations: Evolutionary Equations
, edited by
C. M.
Dafermos
and
E.
Feireis
(
Elsevier B.V.
,
Amsterdam
,
2005
), Vol.
2
.
13.
El Hajj
,
R.
and
Méhats
,
F.
, “
Analysis of models for quantum transport of electrons in graphene layers
,”
Math. Models Methods Appl. Sci.
(published online).
14.
Fox
,
L.
and
Parker
,
I. B.
,
Chebyshev Polynomials in Numerical Analysis
(
Oxford University Press
,
London
,
1968
).
15.
Jüngel
,
A.
,
Krause
,
S.
, and
Pietra
,
P.
, “
Diffusive semiconductor moment equations using Fermi-Dirac statistics
,”
Z. Angew. Math. Phys.
62
(
4
),
623
639
(
2011
).
16.
Jüngel
,
A.
and
Zamponi
,
N.
, “
Two spinorial drift-diffusion models for quantum electron transport in graphene
,”
Commun. Math. Sci.
11
(
3
),
807
830
(
2013
).
17.
La Rosa
,
S.
,
Mascali
,
G.
, and
Romano
,
V.
, “
Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: The 8-moment case
,”
SIAM J. Appl. Math.
70
(
3
),
710
734
(
2009
).
18.
Levermore
,
C. D.
, “
Moment closure hierarchies for kinetic theories
,”
J. Stat. Phys.
83
(
5/6
),
1021
1065
(
1996
).
19.
Lewin
,
L.
,
Polylogarithms and Associated Functions
(
North Holland
,
New York
,
1981
).
20.
Lichtenberger
,
P.
,
Morandi
,
O.
, and
Schürrer
,
F.
, “
High field transport and optical phonon scattering in graphene
,”
Phys. Rew. B
84
,
045406
7
(
2011
).
21.
Lundstrom
,
M.
,
Fundamentals of Carrier Transport
(
Cambridge University Press
,
Cambridge
,
2000
).
22.
Morandi
,
O.
, “
Wigner-function formalism applied to the Zener band transition in a semiconductor
,”
Phys. Rev. B
80
,
024301
12
(
2009
).
23.
Morandi
,
O.
and
Schürrer
,
F.
, “
Wigner model for quantum transport in graphene
,”
J. Phys. A: Math. Theor.
44
,
265301
(
2011
).
24.
Müller
,
M.
,
Schmalian
,
J.
, and
Fritz
,
L.
, “
Graphene: A nearly perfect fluid
,”
Phys. Rev. Lett.
103
,
025301
4
(
2009
).
25.
Svintsov
,
D.
,
Vyurkov
,
V.
,
Yurchenko
,
S.
,
Otsuji
,
T.
, and
Ryzhii
,
V.
, “
Hydrodynamic model for electron-hole plasma in graphene
,”
J. Appl. Phys.
111
,
083715
(
2012
).
26.
Thaller
,
B.
,
The Dirac Equation
(
Springer Verlag
,
Berlin
,
1992
).
27.
Trovato
,
M.
and
Reggiani
,
L.
, “
Quantum maximum entropy principle for a system of identical particles
,”
Phys. Rev. E
81
,
021119
11
(
2010
).
28.
Wood
,
D. C.
, “
The computation of polylogarithms
,” Technical Report No. 15/92, University of Kent Computing Laboratory,
1992
.
29.
Wu
,
N.
,
The Maximum Entropy Method
(
Springer-Verlag
,
Berlin
,
1997
).
30.
Zamponi
,
N.
, “
Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization
,”
Kinet. Relat. Mod.
5
(
1
),
203
221
(
2012
).
31.
Zamponi
,
N.
and
Barletti
,
L.
, “
Quantum electronic transport in graphene: A kinetic and fluid-dynamical approach
,”
Math. Methods Appl. Sci.
34
,
807
818
(
2011
).
32.
We are working with dimensionless Wigner functions and the constant 1/(2πℏ)2 is necessary in order to compute physical moments.4 
33.
Although we have used the same notation for ν and
${\bm w}_\perp$
w
, the former denotes a rotated unit vector, the latter an orthogonal projection.
34.
It is necessary to distinguish three cases: when both the level lines n = nm and n = nM are in the region A < −B, when both are in the region A > −B, and when n = nm is in the first region while n = nM is in the second one. Note, in fact, that the level lines of n cannot cross (asymptotically) the critical line A = −B.
You do not currently have access to this content.