For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the “Biot-Savart helicity” is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it “physical helicity” is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity in hydrodynamics and the magnetic field in MHD is presented by constant coefficients (fluxes) when expanded in terms of one of the time dependent base functions.

1.
H. K.
Moffatt
, “
Some remarks on topological fluid mechanics
,” in
An Introduction to the Geometry and Topology of Fluid Flows
, edited by
R. L.
Ricca
(
Kluwer Academic
,
2001
), pp.
3
10
.
2.
L. F.
Helmholtz
, “
Über integral der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen
,”
J. Reine Angew. Math.
1858
(
55
),
25
55
(
1858
).
3.
W.
Thomson
, “
On vortex motion
,”
Trans. – R. Soc. Edinburgh
25
,
217
260
(
1868
).
4.
H.
Poincaré
,
Sur la théorie des tourbillion
(
Gauthier-Villars
,
1893
).
5.
S.
Chandrasekhar
and
J.
Woltjer
, “
On force-free magnetic fields
,”
Proc. Natl. Acad. Sci. U.S.A.
44
,
285
289
(
1958
).
6.
J.
Woltjer
, “
A theorem on force-free magnetic fields
,”
Proc. Natl. Acad. Sci. U.S.A.
44
,
489
491
(
1958
).
7.
J.
Woltjer
, “
On hydromagnetic equilibrium
,”
Proc. Natl. Acad. Sci. U.S.A.
44
,
833
841
(
1958
).
8.
H. K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
36
,
117
129
(
1969
).
9.
H. K.
Moffatt
, Fluid mechanics, topology, cusp singularity, and related matters lecture delivered to the first Seminaire International de ÍInstitut de Mécanique de Grenoble, 19–21 May
1992
.
10.
C. F.
Gauss
, “
Integral formula for linking number
,” in
Zur mathematischen Theorie de Electrodynamische Wirkungen
, Collected Works, 2nd ed. (
Koniglichen Gesellschaft des Wissenschaften
,
Gottingen
,
1833
), Vol.
5
, p.
605
.
11.
G.
Călugăreanu
, “
L'intégral de Gauss er l'analyse des noeuds tridimensionnels
,”
Rev. Math. Pures Appl.
4
,
5
20
(
1959
).
12.
G.
Călugăreanu
, “
Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariant
,”
Czech. Math. J. T.
11
,
588
625
(
1961
).
13.
G.
Călugăreanu
, “
Sur les enlacements tridimensionnels des courbes fermées
,”
Comun. Acad. Repub. Pop. Rom.
11
,
829
832
(
1961
).
14.
V. I.
Arnold
, “
The asymptotic Hopf invariant and its applications
,” in
Proceedings of Summer School in Differential Equations at Dilizhan, 1973
(
Armenian Academy of Science
,
Yerevan
,
1974
) (in Russian);
V. I.
Arnold
,
Sel. Math. Sov.
5
,
327
345
(
1986
).
15.
V. I.
Arnold
and
B. A.
Khesin
,
Topological Methods in Hydrodynamics
(
Springer-Verlag
,
New York
,
1998
).
16.
B. A.
Khesin
, “
Topological fluid dynamics
,”
Not. Am. Math. Soc.
52
,
9
19
(
2005
).
17.
J.-M.
Gambaudo
, “
Knots, flows and fluids
,”
Dynamique des difféomorphismes conservatifs des surfaces: un point de vue topologique
No. 21, 53103 (
Panoramas Et Syntheses
,
2006
).
18.
J.
Cantarella
,
D.
DeTurck
,
H.
Gluck
, and
M.
Teytel
, “
Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
,”
J. Math. Phys.
41
,
5615
5641
(
2000
).
19.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
The Biot-Savart operator for application to knot theory, fluid dynamics, and plasma physics
,”
J. Math. Phys.
42
,
876
905
(
2001
).
20.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
Upper bounds for the writhing of knots and the helicity of vector fields
,”
Stud. Adv. Math.
24
,
1
21
(
2001
).
21.
G.
Contreras
and
R.
Iturriaga
, “
Average linking number
,”
Ergodic Theory Dyn. Syst.
19
,
1425
1435
(
1999
).
22.
J.-M.
Gambaudo
and
É.
Ghys
, “
Enlacements asymptotiques
,”
Topology
36
,
1355
1379
(
1997
).
23.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
Vector calculus and the topology of domains in 3-space
,”
Am. Math. Mon.
109
,
409
442
(
2002
).
24.
J.
Cantarella
, “
A general cross-helicity formula
,”
Proc. R. Soc. London, Ser. A
456
,
2771
2779
(
2000
).
25.
J.
Cantarella
and
J.
Parsley
, “
A new cohomological formula for helicity in
$\mathbb {R}^{2k+1}$
R2k+1
reveals the effect of a diffeomorphism on helicity
,”
J. Geom. Phys.
60
(
9
),
1127
1155
(
2010
).
26.
A. J.
Chorin
and
J. E.
Marsden
,
A Mathematical Introduction to Fluid Mechanics
(
Springer-Verlag
,
New York
,
1979
).
27.
F. W.
Warner
,
Foundations of Differentiable Manifolds and Lie Groups
(
Springer-Verlag
,
New York
,
1983
).
28.
H.
Eshraghi
, “
On the vortex dynamics in fully relativistic plasmas
,”
Phys. Plasmas
10
,
3577
3583
(
2003
).
29.
B. A.
Bambah
,
S. M.
Mahajan
, and
C.
Mukku
, “
Yang-Mills magnetofluid unification
,”
Phys. Rev. Lett.
97
,
072301
(
2006
).
30.
S. M.
Mahajan
and
F. A.
Asenjo
, “
Vortical dynamics of spinning quantum plasmas: Helicity conservation
,”
Phys. Rev. Lett.
107
,
195003
(
2011
).
31.
H.
Kedia
,
I.
Bialynicki-Birula
,
D.
Peralta-Salas
, and
W. T. M.
Irvine
, “
Tying knots in light fields
,”
Phys. Rev. Lett.
111
,
150404
(
2013
).
You do not currently have access to this content.