Proper conformal symmetries in self-dual Einstein spaces are considered. It is shown that such symmetries are admitted only by the Einstein spaces of the type

$[\textrm {N},-] \otimes [\textrm {N},-]$
[N,][N,]⁠. Spaces of the type
$[\textrm {N}] \otimes [-]$
[N][]
are considered in details. Existence of the proper conformal Killing vector implies existence of the isometric, covariantly constant, and null Killing vector. It is shown that there are two classes of
$[\textrm {N}] \otimes [-]$
[N][]
-metrics admitting proper conformal symmetry. They can be distinguished by analysis of the associated anti-self-dual (ASD) null strings. Both classes are analyzed in details. The problem is reduced to single linear partial differential equation (PDE). Some general and special solutions of this PDE are presented.

1.
R.
Penrose
, “
A spinor approach to general relativity
,”
Ann. Phys.
10
,
171
(
1960
).
2.
G. C.
Debney
,
R. P.
Kerr
, and
A.
Schild
, “
Solutions of the Einstein and Einstein-Maxwell equations
,”
J. Math. Phys.
10
,
1842
(
1969
).
3.
E. T.
Newman
, “
The Bondi-Metzner-Sachs group: Its complexification and some related curious consequences
,” in
Seventh International Conference on Gravitation and Relativity
,
Tel-Aviv
,
1974
.
4.
E. T.
Newman
, “
Heaven and its properties
,” in
Riddle of Gravitation Symposium
,
Syracuse
,
1975
.
5.
J. F.
Plebański
, “
Some solutions of complex Einstein equations
,”
J. Math. Phys.
16
,
2395
(
1975
).
6.
J. D.
Finley
 III
and
J. F.
Plebański
, “
Further heavenly metrics and their symmetries
,”
J. Math. Phys.
17
,
585
(
1976
).
7.
J. D.
Finley
 III
and
J. F.
Plebański
, “
The classification of all
$\mathcal {H}$
H
spaces admitting a Killing vector
,”
J. Math. Phys.
20
,
1938
(
1979
).
8.
M.
Dunajski
and
S.
West
, “
Anti-self-dual conformal structures with null Killing vectors from projective structures
,”
Commun. Math. Phys.
272
,
85
118
(
2007
).
9.
M.
Dunajski
, “
An interpolating dispersionless integrable system
,”
J. Phys. A: Math. Theor.
41
,
315202
(
2008
).
10.
A.
Chudecki
, “
Classification of the Killing vectors in nonexpanding
$\mathcal {HH}$
HH
-spaces with Λ
,”
Classical Quantum Gravity
29
,
135010
(
2012
).
11.
J. F.
Plebański
and
I.
Robinson
, “
Left - degenerate vacuum metrics
,”
Phys. Rev. Lett.
37
,
493
(
1976
).
12.
J. F.
Plebański
and
J. D.
Finley
 III
, “
Killing vectors in nonexpanding HH spaces
,”
J. Math. Phys.
19
,
760
(
1978
).
13.
S. A.
Sonnleitner
and
J. D.
Finley
 III
, “
The form of Killing vectors in expanding
$\mathcal {HH}$
HH
spaces
,”
J. Math. Phys.
23
(
1
),
116
(
1982
).
14.
A.
Chudecki
, “
Homothetic Killing vectors in expanding
$\mathcal {HH}$
HH
-spaces with Λ
,”
Int. J. Geom. Methods Mod. Phys.
10
(
1
),
1250077
(
2013
).
15.
J. F.
Plebański
and
S.
Hacyan
, “
Some properties of Killing spinors
,”
J. Math. Phys.
17
,
2204
(
1976
).
16.
R.
Maartens
and
S. D.
Maharaj
, “
Conformal symmetries of pp-waves
,”
Classical Quantum Gravity
8
,
503
514
(
1991
).
17.
A.
Chudecki
, “
Conformal Killing vectors in nonexpanding
$\mathcal {HH}$
HH
-spaces with Λ
,”
Classical Quantum Gravity
27
,
205004
(
2010
).
18.
D.
Garfinkle
and
Q.
Tian
, “
Spacetimes with cosmological constant and a conformal Killing field have constant curvature
,”
Classical Quantum Gravity
4
,
137
(
1987
).
19.
A.
Chudecki
and
M.
Przanowski
, “
Killing symmetries in
$\mathcal {H}$
H
-spaces with Λ
,”
J. Math. Phys.
54
,
102503
(
2013
).
20.
B.
Champagne
,
W.
Hereman
, and
P.
Winternitz
, “
The computer calculation of Lie point symmetries of large systems of differential equations
,”
Comput. Phys. Commun.
66
,
319
(
1991
).
21.
A.
Chudecki
and
M.
Przanowski
, “
From hyperheavenly spaces to Walker and Osserman spaces: I
,”
Classical Quantum Gravity
25
,
145010
(
2008
).
You do not currently have access to this content.