We discuss the quantization of linearized gravity on globally hyperbolic, asymptotically flat, vacuum spacetimes, and the construction of distinguished states which are both of Hadamard form and invariant under the action of all bulk isometries. The procedure, we follow, consists of looking for a realization of the observables of the theory as a sub-algebra of an auxiliary, non-dynamical algebra constructed on future null infinity ℑ+. The applicability of this scheme is tantamount to proving that a solution of the equations of motion for linearized gravity can be extended smoothly to ℑ+. This has been claimed to be possible provided that a suitable gauge fixing condition, first written by Geroch and Xanthopoulos [“

Asymptotic simplicity is stable
,” J. Math. Phys.19, 714 (1978)], is imposed. We review its definition critically, showing that there exists a previously unnoticed obstruction in its implementation leading us to introducing the concept of radiative observables. These constitute an algebra for which a Hadamard state induced from null infinity and invariant under the action of all spacetime isometries exists and it is explicitly constructed.

1.
A.
Ashtekar
and
A.
Magnon-Ashtekar
, “
On the symplectic structure of general relativity
,”
Commun. Math. Phys.
86
,
55
(
1982
).
2.
A.
Ashtekar
, “
Radiative degrees of freedom of the gravitational field in exact general relativity
,”
J. Math. Phys.
22
,
2885
(
1981
).
3.
C.
Bär
, “
Green-hyperbolic operators on globally hyperbolic spacetimes
,”
Commun. Math. Phys.
(published online); e-print arXiv:1310.0738 [math-ph].
4.
M.
Benini
,
C.
Dappiaggi
, and
T.-P.
Hack
, “
Quantum field theory on curved backgrounds – A primer
,”
Int. J. Mod. Phys. A
28
,
1330023
(
2013
); e-print arXiv:1306.0527 [gr-qc].
5.
M.
Benini
,
C.
Dappiaggi
,
T.-P.
Hack
, and
A.
Schenkel
, “
A C*-algebra for quantized principal U(1)-connections on globally hyperbolic Lorentzian manifolds
,”
Commun. Math. Phys.
(published online); e-print arXiv:1307.3052 [math-ph].
6.
M.
Benini
,
C.
Dappiaggi
, and
A.
Schenkel
, “
Quantum field theory on affine bundles
,”
Ann. Henri Poincare
15
,
171
(
2014
); e-print arXiv:1210.3457 [math-ph].
7.
M.
Benini
,
C.
Dappiaggi
, and
A.
Schenkel
, “
Quantized Abelian principal connections on Lorentzian manifolds
,”
Commun. Math. Phys.
330
,
123
(
2014
); e-print arXiv:1303.2515 [math-ph].
8.
M.
Benini
, “
Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies
,” e-print arXiv:1401.7563 [math-ph].
9.
C.
Bär
and
K.
Fredenhagen
, “
Quantum field theory on curved spacetimes
,”
Lect. Notes Phys.
786
,
1
(
2009
).
10.
R.
Brunetti
,
K.
Fredenhagen
, and
K.
Rejzner
, “
Quantum gravity from the point of view of locally covariant quantum field theory
,” e-print arXiv:1306.1058 [math-ph].
11.
C.
Bär
,
N.
Ginoux
, and
F.
Pfäffle
, “
Wave equations on Lorenzian manifolds and quantization
,”
Zürich, Switzerland: Eur. Math. Soc.
(
2007
),
194
pp.; e-print arXiv:0806.1036 [math.DE].
12.
J.
Bicak
and
B. G.
Schmidt
, “
Isometries compatible with gravitational radiation
,”
J. Math. Phys.
25
,
600
(
1984
).
13.
R.
Bott
and
L. W.
Tu
,
Differential Forms in Algebraic Topology
(
Springer
,
1982
).
14.
J.
Dimock
, “
Quantized electromagnetic field on a manifold
,”
Rev. Math. Phys.
04
,
223
(
1992
).
15.
C.
Dappiaggi
and
B.
Lang
,“
Quantization of Maxwell's equations on curved backgrounds and general local covariance
,”
Lett. Math. Phys.
101
,
265
(
2012
); e-print arXiv:1104.1374 [gr-qc].
16.
C.
Dappiaggi
,
V.
Moretti
, and
N.
Pinamonti
, “
Rigorous steps towards holography in asymptotically flat spacetimes
,”
Rev. Math. Phys.
18
,
349
(
2006
); e-print arXiv:gr-qc/0506069.
17.
C.
Dappiaggi
,
V.
Moretti
, and
N.
Pinamonti
, “
Cosmological horizons and reconstruction of quantum field theories
,”
Commun. Math. Phys.
285
,
1129
(
2009
); e-print arXiv:0712.1770 [gr-qc].
18.
C.
Dappiaggi
,
V.
Moretti
, and
N.
Pinamonti
, “
Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property
,”
J. Math. Phys.
50
,
062304
(
2009
).
19.
C.
Dappiaggi
,
V.
Moretti
, and
N.
Pinamonti
, “
Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime
,”
Adv. Theor. Math. Phys.
15
,
355
(
2011
); e-print arXiv:0907.1034 [gr-qc].
20.
C.
Dappiaggi
,
T.-P.
Hack
, and
N.
Pinamonti
, “
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
,”
Ann. Henri Poincare
12
,
1449
(
2011
); e-print arXiv:1009.5179 [gr-qc].
21.
C.
Dappiaggi
,
N.
Pinamonti
, and
M.
Porrmann
, “
Local causal structures, Hadamard states and the principle of local covariance in quantum field theory
,”
Commun. Math. Phys.
304
,
459
(
2011
); e-print arXiv:1001.0858 [hep-th].
22.
C.
Dappiaggi
and
D.
Siemssen
, “
Hadamard states for the vector potential on asymptotically flat spacetimes
,”
Rev. Math. Phys.
25
,
1350002
(
2013
); e-print arXiv:1106.5575 [gr-qc].
23.
S.
Deser
,
Hung-Sheng
Tsao
, and
P.
van Nieuwenhuizen
, “
Nonrenormalizability of Einstein-Yang-Mills interactions at the one-loop level
,”
Phys. Lett. B
50
,
491
(
1974
).
24.
C. J.
Fewster
and
D. S.
Hunt
, “
Quantization of linearized gravity in cosmological vacuum spacetimes
,”
Rev. Math. Phys.
25
,
1330003
(
2013
); e-print arXiv:1203.0261 [math-ph].
25.
S. A.
Fulling
,
F. J.
Narcowich
, and
R. M.
Wald
, “
Singularity structure of the two point function in quantum field theory in curved space-time. II
,”
Ann. Phys.
136
,
243
(
1981
).
26.
F.
Finster
and
A.
Strohmaier
, “
Gupta-Bleuler quantization of the Maxwell field in globally hyperbolic space-times
,” e-print arXiv:1307.1632 [math-ph].
27.
H.
Friedrich
, “
On purely radiative space-times
,”
Commun. Math. Phys.
103
,
35
(
1986
).
28.
V. P.
Frolov
, “
Null surface quantization and quantum theory of massless fields in asymptotically flat space-time
,”
Gen. Relativ. Gravitation
10
,
833
(
1979
).
29.
C. J.
Fewster
and
R.
Verch
, “
The necessity of the Hadamard condition
,”
Classical Quantum Gravity
30
,
235027
(
2013
); e-print arXiv:1307.5242 [gr-qc].
30.
R. P.
Geroch
, in
Asymptotic Structure of Space-Time
, edited by
F. Paul
Esposito
and
Louis
Witten
(
Plenum Press
,
1977
).
31.
M. H.
Goroff
and
A.
Sagnotti
, “
Quantum gravity at two loops
,”
Phys. Lett. B
160
,
81
(
1985
).
32.
M. H.
Goroff
and
A.
Sagnotti
, “
The ultraviolet behavior of Einstein gravity
,”
Nucl. Phys. B
266
,
709
(
1986
).
33.
R. P.
Geroch
and
B. C.
Xanthopoulos
, “
Asymptotic simplicity is stable
,”
J. Math. Phys.
19
,
714
(
1978
).
34.
L. P.
Grishchuk
and
V. M.
Yudin
, “
Conformal coupling of gravitational wave field to curvature
,”
J. Math. Phys.
21
,
1168
(
1980
).
35.
C.
Gérard
and
M.
Wrochna
, “
Construction of Hadamard states by pseudo-differential calculus
,”
Commun. Math. Phys.
325
,
713
(
2014
); e-print arXiv:1209.2604 [math-ph].
36.
C.
Gérard
and
M.
Wrochna
, “
Hadamard states for the linearized Yang-Mills equation on curved spacetime
,” e-print arXiv:1403.7153 [math-ph].
37.
T.-P.
Hack
, “
On the Backreaction of scalar and spinor quantum fields in curved spacetimes
,” Ph.D. thesis (
University of Hamburg
,
2010
); e-print arXiv:1008.1776 [gr-qc].
38.
T.-P.
Hack
, “
Quantization of the linearised Einstein-Klein-Gordon system on arbitrary backgrounds and the special case of perturbations in inflation
,” e-print arXiv:1403.3957 [gr-qc].
39.
T.-P.
Hack
and
A.
Schenkel
, “
Linear bosonic and fermionic quantum gauge theories on curved spacetimes
,”
Gen. Relativ. Gravitation
45
,
877
(
2013
); e-print arXiv:1205.3484 [math-ph].
40.
S.
Hollands
and
A.
Ishibashi
, “
Asymptotic flatness and Bondi energy in higher dimensional gravity
,”
J. Math. Phys.
46
,
022503
(
2005
); e-print arXiv:gr-qc/0304054.
41.
S.
Hollands
, “
Aspects of quantum field theory in curved spacetime
,” Ph.D. thesis (
University of York
,
2000
), advisor B. S. Kay.
42.
G.'t
Hooft
and
M. J. G.
Veltman
, “
One loop divergencies in the theory of gravitation
,”
Ann. Poincare Phys. Theor. A
20
,
69
(
1974
).
43.
S.
Hollands
and
R. M.
Wald
, “
Local Wick polynomials and time ordered products of quantum fields in curved space-time
,”
Commun. Math. Phys.
223
,
289
(
2001
); e-print arXiv:gr-qc/0103074.
44.
S.
Hollands
and
R. M.
Wald
, “
Quantum fields in curved spacetime
,” e-print arXiv:1401.2026 [gr-qc].
45.
L.
Hörmander
,
The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis
, 2nd ed. (
Springer
,
Berlin
,
1990
).
46.
D. S.
Hunt
, “
The quantization of linear gravitational perturbations and the Hadamard condition
,” Ph.D. thesis (
University of York
,
2012
).
47.
B. S.
Kay
and
R. M.
Wald
, “
Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate killing horizon
,”
Phys. Rep.
207
,
49
(
1991
).
48.
I.
Khavkine
, “
Characteristics, conal geometry and causality in locally covariant field theory
,” e-print arXiv:1211.1914 [gr-qc].
49.
I.
Khavkine
, “
Covariant phase space, constraints, gauge and the Peierls formula
,”
Int. J. Mod. Phys. A
29
(
5
),
1430009
(
2014
); e-print arXiv:1402.1282 [math-ph].
50.
I.
Khavkine
, “
Cohomology with causally restricted supports
,” e-print arXiv:1404.1932 [math-ph].
51.
D. M.
Marolf
, “
The generalized Peierls bracket
,”
Ann. Phys.
236
,
392
(
1994
); e-print arXiv:hep-th/9308150.
52.
V.
Moretti
, “
Uniqueness theorem for BMS-invariant states of scalar QFT on the null boundary of asymptotically flat spacetimes and bulk-boundary observable algebra correspondence
,”
Commun. Math. Phys.
268
,
727
(
2006
); e-print arXiv:gr-qc/0512049.
53.
V.
Moretti
, “
Quantum out-states holographically induced by asymptotic flatness: Invariance under spacetime symmetries, energy positivity and Hadamard property
,”
Commun. Math. Phys.
279
,
31
(
2008
); e-print arXiv:gr-qc/0610143.
54.
S.
Murro
, “
Hadamard states for linearized gravity on asymptotically flat spacetimes
,” M.S. thesis (
University of Pavia
,
2013
).
55.
R. E.
Peierls
, “
The commutation laws of relativistic field theory
,”
Proc. R. Soc. London, Ser. A
214
,
143
(
1952
).
56.
M. J.
Radzikowski
, “
Micro-local approach to the Hadamard condition in quantum field theory on curved space-time
,”
Commun. Math. Phys.
179
,
529
(
1996
).
M. J.
Radzikowski
, “
A local to global singularity theorem for quantum field theory on curved space-time
,”
Commun. Math. Phys.
180
,
1
(
1996
).
57.
K.
Sanders
, “
A note on spacelike and timelike compactness
,”
Classical Quantum Gravity
30
,
115014
(
2013
); e-print arXiv:1211.2469 [math-ph].
58.
K.
Sanders
,
C.
Dappiaggi
, and
T.-P.
Hack
, “
Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss' law
,”
Commun. Math. Phys.
(to be published); e-print arXiv:1211.6420 [math-ph].
59.
D.
Siemssen
, “
Quantization of the electromagnetic potential in asymptotically flat spacetimes
,” Diploma thesis (
Universität Hamburg
,
2011
).
60.
H.
Sahlmann
and
R.
Verch
, “
Microlocal spectrum condition and Hadamard form for vector valued quantum fields in curved space-time
,”
Rev. Math. Phys.
13
,
1203
(
2001
); e-print arXiv:math-ph/0008029.
61.
J. M.
Stewart
and
M.
Walker
, “
Perturbations of spacetimes in general relativity
,”
Proc. R. Soc. London, Ser. A
341
,
49
(
1974
).
62.
R. M.
Wald
,
General Relativity
(
Chicago University Press
,
1984
).
You do not currently have access to this content.