We prove a Euler-Poincaré reduction theorem for stochastic processes taking values on a Lie group, which is a generalization of the reduction argument for the deterministic case [J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems,

Texts in Applied Mathematics
(
Springer
, 2003)]. We also show examples of its application to SO(3) and to the group of diffeomorphisms, which includes the Navier-Stokes equation on a bounded domain and the Camassa-Holm equation.

1.
M.
Arnaudon
and
A. B.
Cruzeiro
, “
Lagrangian Navier-Stokes diffusions on manifolds: variational principle and stability
,”
Bull. Sci. Math.
136
(
8
),
857
881
(
2012
).
2.
V. I.
Arnold
, “
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits
,”
Ann. Inst. Fourier
16
,
319
361
(
1966
).
3.
V. I.
Arnold
and
B.
Khesin
, “
Topological methods in hydrodynamics
,” Applied Mathematics, Series 125 (Springer,
1998
).
4.
J. M.
Bismut
,
Mécanique aléatoire
,
Lecture Notes in Mathematics
, Vol.
866
(
Springer
,
1981
).
5.
R.
Camassa
and
D. D.
Holm
, “
A completely integrable dispersive shallow water equation with peaked solutions
,”
Phys. Rev. Lett.
71
,
1661
1664
(
1993
).
6.
K. L.
Chung
and
J. C.
Zambrini
,
Introduction to Random Time and Quantum Randomness
(
World Scientific
,
2003
).
7.
F.
Cipriano
and
A. B.
Cruzeiro
, “
Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus
,”
Commun. Math. Phys.
275
(
1
),
255
269
(
2007
).
8.
A. B.
Cruzeiro
, “
Hydrodynamics, probability and the geometry of the diffeomorphisms group
,”
Seminar on Stochastic Analysis, Random Fields and Applications IV
, edited by
R. C.
Dalang
,
M.
Dozzy
, and
F.
Russo
(
Birkhauser
,
2011
), p.
63
.
9.
A. B.
Cruzeiro
and
P.
Malliavin
, “
Nonergodicity of Euler fluid dynamics on tori versus positivity of the Arnold-Ricci tensor
,”
J. Funct. Anal.
254
(
7
),
1903
1925
(
2008
).
10.
M.
Emery
,
Stochastic Calculus in Manifolds
,
Universitext
(
Springer
,
1989
).
11.
D. G.
Ebin
and
J. E.
Marsden
, “
Groups of diffeomorphisms and the motion of an incompressible fluid
,”
Ann. Math.
92
,
102
163
(
1970
).
12.
C.
Foias
,
D. D.
Holm
, and
E. S.
Titi
, “
The three-dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory
,”
J. Dyn. Differ. Eqns.
14
,
1
35
(
2002
).
13.
D. D.
Holm
,
J. E.
Marsden
, and
T.
Ratiu
, “
The Euler-Poincaré equations and semidirect products with applications to continuum theories
,”
Adv. Math.
137
(
1
),
1
81
(
1998
).
14.
N.
Ikeda
and
S.
Watanabe
,
Stochastic Differential Equations and Diffusion Processes
(
North-Holland
,
1981
).
15.
T.
Kato
,
M.
Mitrea
,
G.
Ponce
, and
M.
Taylor
, “
Extension and representation of divergence-free vector fields on bounded domains
,”
Math. Res. Lett.
7
(
5-6
),
643
650
(
2000
).
16.
H.
Kunita
,
Stochastic Flows and Stochastic Differential Equations
(
Cambridge University Press
,
1997
).
17.
J. A.
Lázaro-Camí
and
J. P.
Ortega
, “
Stochastic Hamiltonian dynamical systems
,”
Rep. Math. Phys.
61
(
1
),
65
122
(
2008
).
18.
J. E.
Marsden
and
T. S.
Ratiu
,
Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems
,
Texts in Applied Mathematics
(
Springer
,
2003
).
19.
S.
Shkoller
, “
Geometry and curvature of diffeomorphism groups with H1 metric and mean hydrodynamics
,”
J. Funct. Anal.
160
,
337
365
(
1998
).
20.
R.
Teman
,
Navier-Stokes Equations
(
North-Holland
,
Amsterdam
,
1986
).
21.
J.
Vukadinovic
, “
On the backwards behavior of the solutions of the 2D periodic viscous Camassa-Holm equations
,”
J. Dyn. Differ. Eqns.
14
(
1
),
37
62
(
2002
).
22.
K.
Yasue
, “
Stochastic calculus of variations
,”
Lett. Math. Phys.
4
(
4
),
357
360
(
1980
).
23.
K.
Yasue
, “
A variational principle for the Navier-Stokes equation
,”
J. Funct. Anal.
51
(
2
),
133
141
(
1983
).
24.
J. C.
Zambrini
, “
Variational processes and stochastic versions of mechanics
,”
J. Math. Phys.
27
(
9
),
2307
2330
(
1986
).
You do not currently have access to this content.