Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.

1.
Ahlbrecht
,
A.
,
Vogts
,
H.
,
Werner
,
A. H.
, and
Werner
,
R. F.
, “
Asymptotic evolution of quantum walks with random coin
,”
J. Math. Phys.
52
,
042201
(
2011
).
2.
Andrews
,
D. W. K.
, “
A zero-one result for the least squares estimator
,”
Eco. Theory
1
,
85
96
(
1985
).
3.
Araki
,
H.
and
Ho
,
T. G.
, “
Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain
,”
Proc. Steklov Inst. Math.
228
,
191
204
(
2000
).
4.
Araki
,
H.
and
Wyss
,
W.
, “
Representations of canonical anticommutation relations
,”
Helv. Phys. Acta
37
,
136
159
(
1964
).
5.
Aschbacher
,
W.
,
Jakšić
,
V.
,
Pautrat
,
Y.
, and
Pillet
,
C. A.
, “
Transport properties of quasi-free fermions
,”
J. Math. Phys.
48
,
032101
(
2007
).
6.
Aschbacher
,
W.
and
Pillet
,
C.-A.
, “
Non-equilibrium steady states of the XY chain
,”
J. Stat. Phys.
112
,
1153
1175
(
2003
).
7.
Attal
,
S.
, “
Approximating the Fock space with the toy Fock space
,”
Séminaire de Probabilités XXXVI
,
Lecture Notes in Mathematics
Vol.
1801
(
Springer
,
Berlin
,
2003
), pp.
477
491
.
8.
Attal
,
S.
and
Joye
,
A.
, “
Weak coupling and continuous limits for repeated quantum interactions
,”
J. Stat. Phys.
126
,
1241
1283
(
2007
).
9.
Attal
,
S.
and
Joye
,
A.
, “
The Langevin equation for a quantum heat bath
,”
J. Funct. Anal.
247
,
253
288
(
2007
).
10.
Attal
,
S.
and
Pautrat
,
Y.
, “
From repeated to continuous quantum interactions
,”
Ann. Henri Poincaré
7
,
59
104
(
2006
).
11.
Bach
,
V.
,
Fröhlich
,
J.
, and
Sigal
,
I. M.
, “
Return to equilibrium
,”
J. Math. Phys.
41
(
6
),
3985
4060
(
2000
).
12.
Barchielli
,
A.
, “
Continual measurements in quantum mechanics and quantum stochastic calculus
,” in
Open Quantum Systems III Recent Developments
,
Lecture Notes in Mathematics
Vol.
1882
, edited by
S.
Attal
,
A.
Joye
, and
C. A.
Pillet
(
Springer
,
2006
), pp.
207
292
.
13.
Bauer
,
M.
and
Bernard
,
D.
, “
Convergence of repeated quantum non-demolition measurements and wave function collapse
,”
Phys. Rev. A
84
,
044103
(
2011
).
14.
Bauer
,
M.
,
Benoist
,
T.
, and
Bernard
,
D.
, “
Repeated quantum non-demolition measurements: Convergence and continuous-time limit
,”
Ann. Henri Poincaré
14
(
4
),
639
679
(
2013
).
15.
Bayfield
,
J. E.
,
Quantum Evolution. An Introduction to Time-Dependent Quantum Mechanics
(
Wiley
,
New York
,
1999
).
16.
Billingsley
,
P.
,
Probability and Measure
, 3rd ed.,
Wiley Series in Probability and Mathematical Statistics
(
John Wiley & Sons, Inc.
,
New York
,
1995
).
17.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics
,
Texts and Monographs in Physics
(
Springer
,
Verlag
,
1996
), Vols.
1 and 2
.
18.
Brune
,
M.
,
Raimond
,
J. M.
, and
Haroche
,
S.
, “
Theory of the Rydberg-atom two-photon micromaser
,”
Phys. Rev. A
35
(
1
),
154
163
(
1987
).
19.
Bruneau
,
L.
,
De Bièvre
,
S.
, and
Pillet
,
C.-A.
, “
Scattering induced current in a tight binding band
,”
J. Math. Phys.
52
,
022109
(
2011
).
20.
Bruneau
,
L.
,
Joye
,
A.
, and
Merkli
,
M.
, “
Asymptotics of repeated quantum interaction systems
,”
J. Funct. Anal.
239
,
310
344
(
2006
).
21.
Bruneau
,
L.
,
Joye
,
A.
, and
Merkli
,
M.
, “
Infinite products of random matrices and repeated interaction quantum dynamics
,” Ann. Inst. Henri Poincaré
Probab. Stat.
46
(
2
),
442
464
(
2010
).
22.
Bruneau
,
L.
,
Joye
,
A.
, and
Merkli
,
M.
, “
Random repeated interaction quantum systems
,”
Commun. Math. Phys.
284
,
553
581
(
2008
).
23.
Bruneau
,
L.
,
Joye
,
A.
, and
Merkli
,
M.
, “
Repeated and continuous interactions in open quantum systems
,”
Ann. Henri Poincaré
10
(
7
),
1251
1284
(
2010
).
24.
Bruneau
,
L.
and
Pillet
,
C.-A.
, “
Thermal relaxation of a QED cavity
,”
J. Stat. Phys.
134
(
5–6
),
1071
1095
(
2009
).
25.
Caves
,
C. M.
, “
Quantum mechanics of measurement distributed in time: A path-integral formulation
,”
Phys. Rev. D
33
,
1643
1665
(
1986
).
26.
Cohen-Tannoudji
,
C.
,
Dupont-Roc
,
J.
, and
Grinberg
,
G.
,
Atom-Photon Interactions
(
Wiley
,
New York
,
1992
).
27.
Cohen-Tannoudji
,
C.
,
Diu
,
B.
, and
Laloe
,
F.
,
Mécanique Quantique
(
TomeI
,
Hermann, Paris
,
1977
).
28.
Cornean
,
H. D.
,
Jensen
,
A.
, and
Moldoveanu
,
V.
, “
A rigorous proof of the Landauer-Büttiker formula
,”
J. Math. Phys.
46
,
042106
(
2005
).
29.
Cornean
,
H. D.
,
Neidhardt
,
H.
, and
Zagrebnov
,
V.
, “
The effect of time-dependent coupling on non-equilibrium steady states
,”
Ann. Henri Poincaré
10
(
1
),
61
93
(
2009
).
30.
Davidovich
,
L.
,
Raimond
,
J. M.
,
Brune
,
M.
, and
Haroche
,
S.
, “
Quantum theory of a two-photon micromaser
,”
Phys. Rev. A
36
,
3771
3787
(
1987
).
31.
Davies
,
E. B.
Markovian master equations
,”
Commun. Math. Phys.
39
,
91
110
(
1974
).
32.
Davies
,
E. B.
Markovian master equations II
,”
Math. Ann.
219
,
147
158
(
1976
).
33.
Davies
,
E. B.
and
Spohn
,
H.
, “
Open quantum systems with time-dependent Hamiltonians and their linear response
,”
J. Stat. Phys.
19
,
511
523
(
1978
).
34.
Dembo
,
A.
and
Zeitouni
,
O.
Large Deviations Techniques and Applications
(
Jones and Bartlett Publishers
,
Boston, MA
,
1993
).
35.
Derezinski
,
J.
and
de Roeck
,
W.
, “
Reduced and extended weak coupling limit
,”
Banach Center Publ.
78
,
91
119
(
2007
).
36.
Derezinski
,
J.
and
Jaksic
,
V.
, “
On the nature of Fermi golden rule of open quantum systems
,”
J. Stat. Phys.
116
,
411
423
(
2004
).
37.
Dutra
,
S. M.
,
Cavity Quantum Electrodynamics
(
Wiley
,
New York
,
2005
).
38.
Fagnola
,
F.
, “
Quantum stochastic differential equations and dilation of completely positive semigroups
,” in
Open Quantum Systems. II. The Markovian Approach
, edited by
S.
Attal
,
A.
Joye
, and
C. A.
Pillet
,
Lecture Notes in Mathematics
Vol.
1881
(
Springer
,
2006
), pp.
183
220
.
39.
Fagnola
,
F.
and
Rebolledo
,
R.
, “
Notes on the qualitative behaviour of quantum Markov semigroups
,” in
Open Quantum Systems. III. Recent Developments
,
Lecture Notes in Mathematics
Vol.
1882
, edited by
S.
Attal
,
A.
Joye
, and
C. A.
Pillet
(
Springer
,
2006
), pp.
161
205
.
40.
Filipowicz
,
P.
,
Javanainen
,
J.
, and
Meystre
,
P.
, “
Theory of a microscopic maser
,”
Phys. Rev. A
34
(
4
),
3077
3087
(
1986
).
41.
Frigerio
,
A.
, “
Covariant Markov dilations of quantum dynamical semigroups
,”
Pub. Res. Inst. Math. Sci.
21
(
3
),
657
675
(
1985
).
42.
Fröhlich
,
J.
,
Merkli
,
M.
, and
Ueltschi
,
D.
, “
Dissipative transport: Thermal contacts and tunneling junctions
,”
Ann. Henri Poincaré
4
,
897
945
(
2004
).
43.
Gleyzes
,
S.
,
Kuhr
,
S.
,
Guerlin
,
C.
,
Bemu
,
J.
,
Deleglise
,
S.
,
Hoff
,
U. B.
,
Brune
,
M.
,
Raimond
,
J.-M.
, and
Haroche
,
S.
, “
Quantum jumps of light recording the birth and death of a photon in a cavity
,”
Nature (London)
446
,
297
300
(
2007
).
44.
Gorini
,
V.
,
Kossakowski
,
A.
, and
Sudarshan
,
E. C. G.
, “
Completely positive semigroups of N-level systems
,”
J. Math. Phys.
17
,
821
(
1976
).
45.
Hudson
,
R. L.
and
Parthasarathy
,
K. R.
Quantum Ito's formula and stochastic evolution
,”
Commun. Math. Phys.
93
,
301
323
(
1984
).
46.
Jakšić
,
V.
,
Ogata
,
Y.
, and
Pillet
,
C.-A.
, “
Linear response theory for thermally driven quantum open systems
,”
J. Stat. Phys.
123
,
547
569
(
2006
).
47.
Jakšić
,
V.
,
Ogata
,
Y.
, and
Pillet
,
C.-A.
, “
The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics
,”
Commun. Math. Phys.
265
,
721
738
(
2006
).
48.
Jakšić
,
V.
,
Ogata
,
Y.
, and
Pillet
,
C.-A.
, “
The Green-Kubo formula for the spin-fermion system
,”
Commun. Math. Phys.
268
,
369
401
(
2006
).
49.
Jakšić
,
V.
,
Ogata
,
Y.
, and
Pillet
,
C.-A.
, “
The Green-Kubo formula for locally interacting fermionic open systems
,”
Ann. Henri Poincaré
8
(
6
),
1013
1036
(
2007
).
50.
Jakšić
,
V.
,
Pautrat
,
Y.
, and
Pillet
,
C.-A.
, “
Central limit theorem for locally interacting Fermi gas
,”
Commun. Math. Phys.
285
,
175
217
(
2009
).
51.
Jakšić
,
V.
and
Pillet
,
C.-A.
, “
On a model for quantum friction. II. Fermi's golden rule and dynamics at positive temperature
,”
Commun. Math. Phys.
176
(
3
),
619
644
(
1996
).
52.
Jakšić
,
V.
and
Pillet
,
C.-A.
, “
On a model for quantum friction. III. Ergodic properties of the spin-boson system
,”
Commun. Math. Phys.
178
(
3
),
627
651
(
1996
).
53.
Jakšić
,
V.
and
Pillet
,
C.-A.
, “
Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs
,”
Commun. Math. Phys.
226
,
131
162
(
2002
).
54.
Jakšić
,
V.
and
Pillet
,
C.-A.
, “
A note on the entropy production formula
,”
Contemp. Math.
327
,
175
180
(
2003
);
Advances in Differential Equations and Mathematical Physics
(
Birmingham
,
AL
,
2002
).
55.
Joye
,
A.
, “
Random time-dependent quantum walks
,”
Commun. Math. Phys.
307
,
65
100
(
2011
).
56.
Joye
,
A.
, “
Dynamical localization of random quantum walks on the lattice
,” in
Proceedings of the International Congress on Mathematical Physics, Aalborg, 2012
(
World Scientific Publishing
,
2014
).
57.
Kempe
,
J.
, “
Quantum random walks–An introductory overview
,”
Contemp. Phys.
44
,
307
327
(
2003
).
58.
Konno
,
N.
, “
Quantum walks
,” in
Quantum Potential Theory
,
Lecture Notes in Mathematics
Vol.
1954
, edited by
U.
Franz
and
M.
Schürmann
(
Springer
,
Berlin
,
2008
), pp.
309
452
.
59.
Kümmerer
,
B.
, “
Markov dilations on W*-algebras
,”
J. Funct. Anal.
63
,
139
177
(
1985
).
60.
Kümmerer
,
B.
and
Maassen
,
H.
, “
A scattering theory for Markov chains
,”
Infin. Dimens. Anal. Quantum Probab. Relat. Top.
03
,
161
176
(
2000
).
61.
Kümmerer
,
B.
and
Maassen
,
H.
, “
An ergodic theorem for repeated and continuous measurement
,” Extended abstract in
Proceedings Mini-workshop MaPhySto
, October
1999
.
62.
Lebowitz
,
J.
and
Spohn
,
H.
, “
Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs
,”
Adv. Chem. Phys.
38
,
109
142
(
1978
).
63.
Lindblad
,
G.
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
,
119
130
(
1976
).
64.
Merkli
,
M.
,
Mück
,
M.
, and
Sigal
,
I. M.
, “
Theory of non-equilibrium stationary states as a theory of resonances
,”
Ann. Henri Poincaré
8
,
1539
1593
(
2007
).
65.
Merkli
,
M.
and
Penney
,
M.
, “
Quantum measurements of scattered particles
,” preprint arXiv:1210.7635.
66.
Meschede
,
D.
,
Walther
,
H.
, and
Müller
,
G.
, “
One-atom maser
,”
Phys. Rev. Lett.
54
,
551
554
(
1985
).
67.
Nachtergaele
,
B.
,
Vershynina
,
A.
, and
Zagrebnov
,
V.
, “
Non-equilibrium States of a photon cavity pumped by an atomic beam
,”
Ann. Henri Poincaré
15
,
213
262
(
2014
).
68.
Nechita
,
I.
and
Pellegrini
,
C.
, “
Random repeated quantum interactions and random invariant states
,”
Prob. Th. Rel. Fields
152
,
299
320
(
2012
).
69.
Nenciu
,
G.
, “
Independent electron model for open quantum systems: Landauer-Büttiker formula and strict positivity of the entropy production
,”
J. Math. Phys.
48
,
033302
(
2007
).
70.
Nielsen
,
M. A.
and
Chuang
,
I. L.
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2000
).
71.
Olver
,
W. J.
,
Lozier
,
D. W.
,
Boisvert
,
R. F.
, and
Clark
,
C. W.
,
NIST Handbook of Mathematical Functions
(
Cambridge University Press
,
2010
).
72.
Open Quantum Systems I-III
,
Lecture Notes in Mathematics
Vols.
1880–1882
, edited by
S.
Attal
,
A.
Joye
, and
C.-A.
Pillet
(
Springer
,
Verlag
,
2006
).
73.
Pellegrini
,
C.
, “
Existence, uniqueness and approximation of a stochastic Schrödinger equation: The diffusive case
,”
Ann. Proba.
36
(
6
),
2332
2353
(
2008
).
74.
Pellegrini
,
C.
, “
Existence, uniqueness and approximation of the jump-type stochastic Schrödinger equation for two-level systems
,”
Stoch. Process Appl.
120
(
9
),
1722
1747
(
2010
).
75.
Pillet
,
C.-A.
, “
Quantum dynamical systems
,” in
Open Quantum Systems. I. The Hamiltonian Approach
,
Lecture Notes in Mathematics
Vol.
1880
, edited by
S.
Attal
,
A.
Joye
, and
C. A.
Pillet
(
Springer
,
2006
), pp.
107
182
.
76.
Raimond
,
J.-M.
,
Brune
,
M.
, and
Haroche
,
S.
, “
Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity
,”
Rev. Mod. Phys.
73
,
565
582
(
2001
).
77.
Raimond
,
J.-M.
and
Haroche
,
S.
, “
Monitoring the decoherence of mesoscopic quantum superpositions in a cavity
,”
Sémi. Poinc.
2
,
25
(
2005
).
78.
Rebolledo
,
R.
, “
Complete positivity and the Markov structure of open quantum systems
,” in
Open Quantum Systems. II. The Markovian Approach
,
Lecture Notes in Mathematics
Vol.
1881
, edited by
S.
Attal
,
A.
Joye
, and
C. A.
Pillet
(
Springer
,
2006
), pp.
149
182
.
79.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics
(
Academic Press
,
San Diego
,
1978
), Vol.
4
.
80.
Ruelle
,
D.
, “
Natural nonequilibrium states in quantum statistical mechanics
,”
J. Stat. Phys.
98
,
57
75
(
2000
).
81.
Santha
,
M.
, “
Quantum walk based search algorithms
,” in
Proceedings of the 5th International Conference on Theory and Applications of Models of Computation (TAMC)
,
Lecture Notes in Computer Science
Vol.
4978
(
Springer
,
Berlin
,
2008
), pp.
31
46
.
82.
Schrader
,
R.
, “
Perron-Frobenius theory for positive maps on trace ideals
,”
Fields Inst. Commun.
30
,
361
378
(
2001
).
83.
Vargas
,
R.
, “
Repeated interaction quantum systems: Van Hove limits and asymptotic states
,”
J. Stat. Phys.
133
,
491
511
(
2008
).
84.
Venegas-Andraca
,
S. E.
, “
Quantum walks: A comprehensive review
,”
Quantum Inf. Process
11
,
1015
1106
(
2012
).
85.
Vogel
,
K.
,
Akulin
,
V. M.
, and
Schleich
,
W. P.
, “
Quantum state engineering of the radiation field
,”
Phys. Rev. Lett.
71
(
12
),
1816
1819
(
1993
).
86.
Weidinger
,
M.
,
Varcoe
,
B. T. H.
,
Heerlein
,
R.
, and
Walther
,
H.
, “
Trapping states in micromaser
,”
Phys. Rev. Lett.
82
,
3795
3798
(
1999
).
87.
Wellens
,
T.
,
Buchleitner
,
A.
,
Kümmerer
,
B.
, and
Maassen
,
H.
, “
Quantum state preparation via asymptotic completeness
,”
Phys. Rev. Lett.
85
(
16
),
3361
3364
(
2000
).
You do not currently have access to this content.