The subject of this paper is solutions of an autoresonance equation. We look for a connection between the parameters of the solution bounded as t  →−∞, and the parameters of two two-parameter families of solutions as t  → ∞. One family consists of the solutions which are not captured into resonance, and another of those increasing solutions which are captured into resonance. In this way we describe the transition through the separatrix for equations with slowly varying parameters and get an estimate for parameters before the resonance of those solutions which may be captured into autoresonance.

1.
N. M.
Krylov
and
N. N.
Bogolyubov
,
Introduction to Nonlinear Mechanics
(
Khar'kov
,
1937
), p.
353
.
2.
A. T.
Sinclair
, “
On the origin of the commensurabilities amongst the satellites of Saturn
,”
Mon. Not. R. Astron. Soc.
160
,
169
187
(
1972
).
3.
V. I.
Veksler
, “
A new method of acceleration of relativistic particles
,”
J. Phys. USSR
9
,
153
158
(
1945
).
4.
J.
Fajans
and
L.
Friedland
, “
Autoresonant (non-stationary) exitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators
,”
Am. J. Phys.
69
(
10
),
1096
1102
(
2001
).
5.
L. A.
Kalyakin
, “
Asymptotic analysis of autoresonance model
,”
Russ. Math. Sur.
63
(
5
),
791
857
(
2008
).
6.
A. I.
Neishtadt
, “
Passing through a separatrix in a resonance problem with a slowly varying parameter
,”
Appl. Math. Mech.
39
(
4
),
621
632
(
1975
).
7.
A.
Neishtadt
, “
Probability phenomena in perturbed dynamical systems
,”
Mechanics of the 21st Century
(
Springer
,
2005
), pp.
241
261
.
8.
B. V.
Chirikov
, “
Resonance processes in magnetic traps
,”
J. Nucl. Energy, Part C: Plasma Phys.
1
,
253
(
1960
).
9.
R. R.
Allan
, “
Evolution of Mimas-Tethys commensurability
,”
Astron. J.
74
(
3
),
497
506
(
1969
).
10.
Springer Handbook of Lasers and Optics
, edited by
F.
Tráger
(
Springer
,
2007
), p.
1332
.
11.
D. J.
Derickson
,
R. J.
Helkey
,
A.
Mar
,
J. R.
Karin
,
J. G.
Wasserbauer
, and
J. E.
Bouwers
, “
Short pulse generation using multisegment mode-locked semiconductor lasers
,”
IEEE J. Quantum Electron.
28
(
10
),
2186
2202
(
1992
).
12.
S. O.
Konorov
,
D. A.
Akimov
,
A. A.
Ivanov
,
M. V.
Alfimov
,
V. I.
Beloglazov
,
N. B.
Skibina
, and
A. M.
Zheltikov
, “
Femtosecond coherent anti-Stokes Raman scattering spectroscopy using frequency tinable chirped pulses produced and shaped in a photonic-cristal fiber
,”
Laser Phys.
14
(
5
),
785
790
(
2004
).
13.
J.
Luo
,
Y.
Niu
,
N.
Cui
,
H.
Zhang
,
S.
Jin
, and
S.
Gong
, “
Linear chirp control of infrared signal in a biased semiconductor thin film
,”
New J. Phys.
10
,
083018
(
2008
).
14.
G. E.
Kuzmak
, “
Asymptotic solutions of nonlinear second order differential equations with variable coefficients
,”
J. Appl. Math. Mech.
23
(
3
),
730
744
(
1959
).
15.
F. J.
Bourland
and
R.
Haberman
, “
The modulated phase shift for strongly nonlinear, slowly varying and weakly damped oscillators
,”
SIAM J. Appl. Math.
48
(
3
),
737
748
(
1988
).
16.
V. I.
Arnold
,
Additional Chapters of the Theory of Ordinary Differential Equations
(
Nauka
,
Moscow
,
1978
), p.
304
.
17.
A. V.
Timofeev
, “
On the question of constancy of the adiabatic invariant under change of the character of movement
,”
J. Exp Theor. Phys.
75
(
4
),
1303
1308
(
1978
).
18.
J. R.
Cary
,
D. F.
Escande
, and
J. L.
Tennyson
, “
Adiabatic-invariant change due to separatrix crossing
,”
Phys. Rev. A
34
,
4256
4275
(
1986
).
19.
A. I.
Neishtadt
, “
Change of an adiabatic invariant at a separatrix
,”
Sov. J. Plasma Phys.
12
,
568
573
(
1986
).
20.
J. R.
Cary
and
R. T.
Scodje
, “
Phase change between separatrix crossings
,”
Physica D
36
,
287
316
(
1989
).
21.
A. I.
Neishtadt
, “
Capture into resonance and scattering on resonances in two-frequency systems, differential equations and dynamical systems, collected papers
,”
Tr. Mat. Inst. Steklova
250
,
198
218
(
2005
).
22.
O. M.
Kiselev
, “
Hard loss of stability in Painlevé-2 equation
,”
J. Nonlinear Math. Phys.
8
(
1
),
65
95
(
2001
).
23.
O. M.
Kiselev
and
S. G.
Glebov
, “
An asymptotic solution slowly crossing the separatrix near a saddle-center bifurcation point
,”
Nonlinearity
16
,
327
362
(
2003
).
24.
O. M.
Kiselev
and
S. G.
Glebov
, “
The capture into parametric autoresonance
,”
Nonlinear Dyn.
48
(
1–2
),
217
230
(
2007
).
25.
R.
Haberman
, “
Nonlinear transition layers: Second Painelevé trancendent
,”
Stud. Appl. Math.
57
,
247
270
(
1977
).
26.
Maxima, a Computer Algebra System, http://maxima.sourceforge.net.
27.
V. K.
Mel'nikov
, “
On stability of the centre under time periodic perturbations
,”
Trans. Moscow Math. Soc.
12
,
3
52
(
1963
).
You do not currently have access to this content.