Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

1.
C.
Altafini
and
F.
Ticozzi
, “
Modelling and control of quantum systems: An introduction
,”
IEEE Trans. Autom. Control
57
(
8
),
1898
1917
(
2012
).
2.
H.
Amini
,
M.
Mirrahimi
, and
P.
Rouchon
, “
Stabilization of a delayed quantum system: The photon box case-study
,”
IEEE Trans. Autom. Control
57
(
8
),
1918
1930
(
2012
).
3.
B.
Baumgartner
and
H.
Narnhofer
, “
The structures of state space concerning quantum dynamical semigroups
,”
Rev. Math. Phys.
24
,
1250001
(
2012
).
4.
D.
Burgarth
and
V.
Giovannetti
, “
The generalized Lyapunov theorem and its application to quantum channels
,”
New J. Phys.
9
(
3
),
150
(
2007
).
5.
D.
Dong
and
I.
Petersen
, “
Quantum control theory and applications: A survey
,”
IET Control Theory Appl.
4
,
2651
2671
(
2010
).
6.
F.
Fagnola
and
R.
Rebolledo
, “
Subharmonic projections for a quantum Markov semigroup
,”
J. Math. Phys.
43
,
1074
(
2002
).
7.
F.
Fagnola
and
R.
Rebolledo
, “
Quantum Markov semigroups and their stationary states
,”
Stochastic Analysis and Mathematical Physics II
(
Springer
,
2003
), pp.
77
128
.
8.
A.
Frigerio
, “
Stationary states of quantum dynamical semigroups
,”
Commun. Math. Phys.
63
(
3
),
269
276
(
1978
).
9.
A.
Frigerio
and
M.
Verri
, “
Long-time asymptotic properties of dynamical semigroups on w*-algebras
,”
Math. Z.
180
(
3
),
275
286
(
1982
).
10.
J.
Gough
and
M.
James
, “
Quantum feedback networks: Hamiltonian formulation
,”
Commun. Math. Phys.
287
,
1109
1132
(
2009
).
11.
J.
Gough
,
M.
James
, and
H.
Nurdin
, “
Squeezing components in linear quantum feedback networks
,”
Phys. Rev. A
81
,
023804
(
2010
).
12.
R.
Hamerly
and
H.
Mabuchi
, “
Advantages of coherent feedback for cooling quantum oscillators
,”
Phys. Rev. Lett.
109
,
173602
(
2012
).
13.
R.
van Handel
,
J.
Stockton
, and
H.
Mabuchi
, “
Feedback control of quantum state reduction
,”
IEEE Trans. Autom. Control
50
(
6
),
768
780
(
2005
).
14.
R. L.
Hudson
and
K. R.
Parthasarathy
, “
Quantum Ito's formula and stochastic evolutions
,”
Commun. Math. Phys.
93
(
3
),
301
323
(
1984
).
15.
M.
James
,
H.
Nurdin
, and
I.
Petersen
, “
H-infinity control of linear quantum stochastic systems
,”
IEEE Trans. Autom. Control
53
(
8
),
1787
1803
(
2008
).
16.
M. R.
James
and
J.
Gough
, “
Quantum dissipative systems and feedback control design by interconnection
,”
IEEE Trans. Autom. Control
55
(
8
),
1806
1821
(
2010
).
17.
M. R.
James
,
I. R.
Petersen
, and
V.
Ugrinovskii
, “
A Popov stability condition for uncertain linear quantum systems
,” in
Proceedings of the American Control Conference
,
Washington, DC
,
2013
.
18.
R.
Khasminskii
,
Stochastic Stability of Differential Equations
(
Springer-Verlag
,
Berlin
,
2012
), Vol.
66
.
19.
H. J.
Kushner
,
Stochastic Stability and Control
(
Academic Press
,
New York
,
1967
).
20.
J. P.
Lasalle
, “
Stability theory for ordinary differential equations
,”
J. Differ. Equ.
4
,
57
65
(
1968
).
21.
Y.
Lin
,
J. P.
Gaebler
,
F.
Reiter
,
T. R.
Tan
,
R.
Bowler
,
A. S.
Sorensen
,
D.
Leibfried
, and
D. J.
Wineland
, “
Dissipative production of a maximally entangled steady state of two quantum bits
,”
Nature (London)
504
,
415
418
(
2013
).
22.
G.
Lindblad
, “
On the generators of quantum dynamical semigroups
,”
Commun. Math. Phys.
48
,
119
130
(
1976
).
23.
H.
Mabuchi
and
N.
Khaneja
, “
Principles and applications of control in quantum systems
,”
Int. J. Robust Nonlin. Control
15
,
647
667
(
2005
).
24.
M.
Malisoff
and
F.
Mazenc
,
Constructions of Strict Lyapunov Functions
,
Communications and Control Engineering
Vol.
70
(
Springer
,
London
,
2009
).
25.
X.
Mao
, “
Stochastic versions of the LaSalle theorem
,”
J. Differ. Equ.
153
,
175
195
(
1999
).
26.
P. A.
Meyer
,
Quantum Probability for Probabilists
(
Springer Verlag
,
1995
), Vol.
1538
.
27.
S. P.
Meyn
and
R. L.
Tweedie
, “
Stability of markovian processes III: Foster-Lyapunov criteria for continuous-time processes
,”
Adv. Appl. Probab.
25
,
518
548
(
1993
).
28.
M.
Mirrahimi
and
R.
Van Handel
, “
Stabilizing feedback controls for quantum systems
,”
SIAM J. Control Optim.
46
(
2
),
445
467
(
2007
).
29.
H.
Nurdin
,
M.
James
, and
I.
Petersen
, “
Coherent quantum LQG control
,”
Automatica
45
,
1837
1846
(
2009
).
30.
K. R.
Parthasarathy
,
An Introduction to Quantum Stochastic Calculus
(
Springer
,
1992
), Vol.
85
.
31.
I. R.
Petersen
,
V.
Ugrinovskii
, and
M. R.
James
, “
Robust stability of uncertain linear quantum systems
,”
Philos. Trans. R. Soc. A
370
(
1979
),
5354
5363
(
2012
).
32.
B.
Qi
,
H.
Pan
, and
L.
Guo
, “
Further results on stabilizing control of quantum systems
,”
IEEE Trans. Autom. Control
58
(
5
),
1349
1354
(
2013
).
33.
M.
Renardy
and
R. C.
Rogers
,
An Introduction to Partial Differential Equations
(
Springer-Verlag
,
New York
,
2004
).
34.
J. J.
Sakurai
,
Modern Quantum Mechanics
(
Addison-Wesley
,
1985
).
35.
C.
Sayrin
,
I.
Dotsenko
,
X.
Zhou
,
B.
Peaudecerf
,
T.
Rybarczyk
,
S.
Gleyzes
,
P.
Rouchon
,
M.
Mirrahimi
,
H.
Amini
,
M.
Brune
,
J. M.
Raimond
, and
S.
Haroche
, “
Real-time quantum feedback prepares and stabilizes photon number states
,”
Nature (London)
477
,
73
77
(
2011
).
36.
S. G.
Schirmer
and
X.
Wang
, “
Stabilizing open quantum systems by markovian reservoir engineering
,”
Phys. Rev. A
81
(
6
),
062306
(
2010
).
37.
A.
Serafini
, “
Feedback control in quantum optics: An overview of experimental breakthroughs and areas of application
,”
ISRN Opt.
2012
,
275016
(
2012
).
38.
U. H.
Thygesen
,
Technical Report: A Survey of Lyapunov Techniques for Stochastic Differential Equations
(
IMM
,
Department of Mathematical Modelling, Technical University of Denmark, Lyngby
,
1997
).
39.
F.
Ticozzi
,
K.
Nishio
, and
C.
Altafini
, “
Stabilization of stochastic quantum dynamics via open and closed loop control
,”
IEEE Trans. Autom. Control
58
(
1
),
74
85
(
2013
).
40.
F.
Verstraete
,
M. M.
Wolf
, and
J.
Ignacio Cirac
, “
Quantum computation and quantum-state engineering driven by dissipation
,”
Nat. Phys.
5
(
9
),
633
636
(
2009
).
41.
X.
Wang
and
S.
Schirmer
, “
Analysis of Lyapunov method for control of quantum states
,”
IEEE Trans. Autom. Control
55
(
10
),
2259
2270
(
2010
).
42.
H. M.
Wiseman
and
G. J.
Milburn
,
Quantum Measurement and Control
(
Cambridge University Press
,
Cambridge
,
2009
).
43.
M.
Yanagisawa
and
H.
Kimura
, “
Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems
,”
IEEE Trans. Autom. Control
48
,
2107
2120
(
2003
).
44.
G.
Zhang
and
M.
James
, “
Quantum feedback networks and control: A brief survey
,”
Chin. Sci. Bull.
57
(
18
),
2200
2214
(
2012
).
45.
J.
Zhang
,
R. B.
Wu
,
Y.
Liu
,
C.
Li
, and
T. J.
Tarn
, “
Quantum coherent nonlinear feedback with applications to quantum optics on chip
,”
IEEE Trans. Autom. Control
57
(
8
),
1997
2008
(
2012
).
You do not currently have access to this content.