The aim of this paper is to describe the vector spaces of those second-order tensors on a pseudo-Riemannian manifold (i.e., tensors whose local expressions only involve second derivatives of the metric) that are divergence-free. The main result establishes isomorphisms between these spaces and certain spaces of tensors (at a point) that are invariant under the action of an orthogonal group. This result is valid for tensors with an arbitrary number of indices and symmetries among them and, in certain cases, it allows to explicitly compute basis, using the classical theory of invariants of the orthogonal group. In the particular case of tensors with two indices, we prove the Lovelock tensors are a basis for the vector space of second-order, divergence-free 2-tensors. This statement generalizes to arbitrary dimension a result established by Lovelock in the case of four-dimensional manifolds.

1.
Anderson
,
I. M.
, “
On the structure of divergence-free tensors
,”
J. Math. Phys.
19
,
2570
2575
(
1978
).
2.
Anderson
,
I. M.
and
Pohjanpelto
,
J.
, “
Variational principles for natural divergence-free tensors in metric field theories
,”
J. Geom. Phys.
62
,
2376
2388
(
2012
).
3.
Bedet
,
R. A.
and
Lovelock
,
D.
, “
Symmetric, divergence-free tensors and the Bel-Robinson tensor
,”
Utilitas Math.
3
,
285
295
(
1973
).
4.
Balfagón
,
A.
and
Jaén
,
X.
, “
Review of some classical gravitational superenergy tensors using computational techniques
,”
Class. Quantum Grav.
17
,
2491
2497
(
2000
).
5.
Castrillón
,
M.
and
Muñoz
,
J.
, “
Gauge-invariant characterization of Yang-Mills-Higgs lagrangians
,”
Ann. Henri Poincaré
8
,
203
217
(
2007
).
6.
Charmousis
,
C.
,
Higher Order Gravity Theories and their Black Hole Solutions
,
Lecture Notes in Physics
Vol.
769
(
Springer
,
Berlin
,
2009
).
7.
Collinson
,
C. D.
, “
A class of conserved tensors in an arbitrary gravitational field
,”
Math. Proc. Cambridge Philos. Soc.
58
,
346
362
(
1962
).
8.
du Plessis
,
J. C.
, “
Tensorial concomitants and conservation laws
,”
Tensor
20
,
347
360
(
1969
).
9.
Epstein
,
D. B. A.
, “
Natural tensors on Riemannian manifolds
,”
J. Differ. Geom.
10
,
631
645
(
1975
).
10.
Gilkey
,
P.
,
Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem
,
Publish or Perish Press, Mathematics Lecture Series
vol.
11
, (
1985
).
11.
Gilkey
,
P.
,
Park
,
J. H.
, and
Sekigawa
,
K.
, “
Universal curvature identities
,”
Differ. Geom. Appl.
62
,
814
825
(
2011
).
12.
Gilkey
,
P.
,
Park
,
J. H.
, and
Sekigawa
,
K.
, “
Universal curvature identities II
,”
J. Geom. Phys.
62
,
814
825
(
2012
).
13.
Goodman
,
R.
and
Wallach
,
N.
,
Representation and Invariants of the Classical Groups
(
Cambridge University Press
,
1998
).
14.
Kastor
,
D.
, “
The Riemann-Lovelock curvature tensor
,”
Class. Quantum Grav.
29
,
155007
(
2012
).
15.
Labbi
,
M.-L.
, “
Variational properties of the Gauss-Bonnet curvatures
,”
Calc. Var.
32
,
175
189
(
2008
).
16.
Lovelock
,
D.
, “
The Einstein tensor and its generalizations
,”
J. Math. Phys.
12
,
498
501
(
1971
).
17.
Lovelock
,
D.
, “
The four dimensionality of space and the Einstein tensor
,”
J. Math. Phys.
13
,
874
876
(
1972
).
18.
Navarro
,
A.
and
Navarro
,
J.
, “
Lovelock's theorem revisited
,”
J. Geom. Phys.
61
,
1950
1956
(
2011
).
19.
Navarro
,
J.
and
Sancho
,
J. B.
, “
On the naturalness of Einstein's equation
,”
J. Geom. Phys.
58
,
1007
1014
(
2008
).
20.
Sancho
,
C.
, “
Grupos algebraicos y teoría de invariantes
,”
Soc. Mat. Mexicana, Aportaciones Matemáticas
,
16
(
2001
).
21.
Stredder
,
P.
, “
Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal groups
,”
J. Differ. Geom.
10
,
647
660
(
1975
).
22.
Takens
,
F.
,
Symmetries, Conservations Laws and Variational Principles
,
Lecture Notes in Mathematics
Vol.
597
(
Springer
,
1977
), pp.
581
603
.
You do not currently have access to this content.