Subentropy is an entropy-like quantity that arises in quantum information theory; for example, it provides a tight lower bound on the accessible information for pure state ensembles, dual to the von Neumann entropy upper bound in Holevo's theorem. Here we establish a series of properties of subentropy, paralleling the well-developed analogous theory for von Neumann entropy. Further, we show that subentropy is a lower bound for min-entropy. We introduce a notion of conditional subentropy and show that it can be used to provide an upper bound for the guessing probability of any classical-quantum state of two qubits; we conjecture that the bound applies also in higher dimensions. Finally, we give an operational interpretation of subentropy within classical information theory.

1.
W. K.
Wootters
, “
Random quantum states
,”
Found. Phys.
20
,
1365
1378
(
1990
).
2.
R.
Jozsa
,
D.
Robb
, and
W. K.
Wootters
, “
Lower bound for accessible information in quantum mechanics
,”
Phys. Rev. A
49
,
668
677
(
1994
).
3.
S.
Sykora
, “
Quantum theory and the Bayesian inference problem
,”
J. Stat. Phys.
11
,
17
(
1974
).
4.
K.
Jacobs
, “
Efficient measurements, purification and bounds on mutual information
,”
Phys. Rev. A
68
,
054302
(
2003
).
5.
G.
Mitchison
and
R.
Jozsa
, “
Towards a geometrical interpretation of quantum information compression
,”
Phys. Rev. A
69
,
032304
(
2004
).
6.
S.
Nichols
and
W.
Wootters
, “
Between entropy and subentropy
,”
Quant. Inf. Comput
3
,
14
(
2003
).
7.
F.
Mintert
and
K.
Zyczkowski
, “
Wehrl entropy, Lieb's conjecture and entanglement monotones
,”
Phys. Rev. A
69
,
022317
(
2004
).
8.
A. S.
Holevo
, “
Bounds for the quantity of information transmitted by a quantum communication channel
,”
Probl. Inf. Trans.
9
,
177
(
1973
).
9.
M.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2000
).
10.
A.
Wehrl
, “
General properties of entropy
,”
Rev. Mod. Phys.
50
,
221
260
(
1978
).
11.
M.
Fannes
, “
A continuity property of the entropy density for spin lattice systems
,”
Commun. Math. Phys.
31
,
291
294
(
1973
).
12.
K. M. R.
Audenaert
, “
A sharp continuity estimate for the von Neumann entropy
,”
J. Phys. A: Math. Theor.
40
,
8127
(
2007
).
13.
R.
Renner
, “
Security of quantum key distribution
,” Ph.D. thesis, (
ETH Zurich
,
2005
), e-print arXiv:quant-ph/0512258.
14.
L.
Hughston
,
R.
Jozsa
, and
W. K.
Wootters
, “
A complete classification of quantum ensembles having a given density matrix
,”
Phys. Lett. A
183
,
14
18
(
1993
).
15.
R.
Bhatia
,
Matrix Analysis
,
Graduate Texts in Mathematics
Vol.
169
(
Springer Verlag
,
New York
,
1996
).
16.
R.
König
,
R.
Renner
, and
C.
Schaffner
, “
The operational meaning of min- and max- entropy
,”
IEEE Trans. Inf. Theor.
55
,
4337
4347
(
2009
).
17.
N.
Datta
, “
Min- and max-relative entropies
,”
IEEE Trans. Inf. Theor.
55
,
2816
2826
(
2009
).
18.
A. S.
Holevo
, “
Statistical decision theory for quantum systems
,”
J. Multivariate Anal.
3
,
337
394
(
1973
).
19.
C. W.
Helstrom
,
Quantum Detection and Estimation Theory
(
Academic Press
,
New York
,
1976
).
20.
A. S.
Holevo
, “
Information theoretical aspects of quantum measurements
,”
Probl. Inf. Trans.
9
,
110
118
(
1973
).
You do not currently have access to this content.