We give a sufficient condition that an operator sum representation of a separable quantum channel in terms of product operators is the unique product representation for that channel, and then provide examples of such channels for any number of parties. This result has implications for efforts to determine whether or not a given separable channel can be exactly implemented by local operations and classical communication. By the Choi-Jamiolkowski isomorphism, it also translates to a condition for the uniqueness of product state ensembles representing a given quantum state. These ideas follow from considerations concerning whether or not a subspace spanned by a given set of product operators contains at least one additional product operator.

1.
K.
Kraus
,
States, Effects, and Operations
(
Springer-Verlag
,
Berlin
,
1983
).
2.
M.
Nielsen
and
I.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
Cambridge, England
,
2000
).
3.
E. M.
Rains
,
Phys. Rev. A
60
,
173
(
1999
).
4.
C. H.
Bennett
,
D. P.
DiVincenzo
,
C. A.
Fuchs
,
T.
Mor
,
E.
Rains
,
P. W.
Shor
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. A
59
,
1070
(
1999
).
5.
S. M.
Cohen
,
Phys. Rev. A
84
,
052322
(
2011
).
6.
S. M.
Cohen
,
Phys. Rev. A
87
,
052135
(
2013
).
7.
S. M.
Cohen
, “
Necessary condition for local quantum operations and classical communication with extensive violation by separable operations
,” pre-print arXiv:1311.2641 [quant-ph] (
2013
).
9.
A.
Jamiolkowski
,
Rep. Math. Phys.
3
,
275
(
1972
).
10.
11.
E.
Alfsen
and
F.
Shultz
,
J. Math. Phys.
51
,
052201
(
2010
).
12.
K.-C.
Ha
and
S.-H.
Kye
,
Commun. Math. Phys.
328
,
131
153
(
2014
); pre-print arXiv:quant-ph/1210.1088v3 (2012).
13.
K.
Kirkpatrick
,
J. Math. Phys.
43
,
684
(
2002
).
14.
J.
Tyson
,
J. Phys. A: Math. Gen.
36
,
10101
(
2003
).
15.
R.
Horn
and
C.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1985
).
16.
If the original set is linearly dependent, it is possible for the new set to have fewer members, in which case u would not be an isometry. By padding the new set with zero operators, u can always be extended to form a unitary matrix.
You do not currently have access to this content.