In this paper we consider the minimum time population transfer problem for a two level quantum system driven by two external fields with bounded amplitude. The controls are modeled as real functions and we do not use the Rotating Wave Approximation. After projection on the Bloch sphere, we treat the time-optimal control problem with techniques of optimal synthesis on 2D manifolds. Based on the Pontryagin Maximum Principle, we characterize a restricted set of candidate optimal trajectories. Properties on this set, crucial for complete optimal synthesis, are illustrated by numerical simulations. Furthermore, when the two controls have the same bound and this bound is small with respect to the difference of the two energy levels, we get a complete optimal synthesis up to a small neighborhood of the antipodal point of the initial condition.

1.
A.
Agrachev
and
Y.
Sachkov
,
Control Theory from the Geometric Viewpoint
,
Encyclopedia of Mathematical Sciences
, Vol.
87
(
Springer
,
2004
).
2.
L.
Allen
and
J. H.
Eberly
,
Optical Resonance and Two-Level Atoms
(
Wiley
,
New York
,
1975
).
3.
B.
Bonnard
,
O.
Cots
,
N.
Shcherbakova
, and
D.
Sugny
, “
The energy minimization problem for two-level dissipative quantum systems
,”
J. Math. Phys.
51
,
092705
(
2010
).
4.
B.
Bonnard
and
D.
Sugny
,
Optimal Control with Applications in Space and Quantum Dynamics
(
American Institute of Mathematical Society
,
2012
).
5.
U.
Boscain
,
T.
Chambrion
, and
G.
Charlot
, “
Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimal energy
,”
Discrete Contin. Dyn. Syst. Ser. B
5
,
957
990
(
2005
).
6.
U.
Boscain
,
G.
Charlot
,
J.-P.
Gauthier
,
S.
Guérin
, and
H.-R.
Jauslin
, “
Optimal control in laser-induced population transfer for two- and three- level quantum systems
,”
J. Math. Phys.
43
,
2107
(
2002
).
7.
U.
Boscain
and
P.
Mason
, “
Time minimal trajectories for a spin 1/2 particle in a magnetic field
,”
J. Math. Phys.
47
,
062101
(
2006
).
8.
U.
Boscain
and
B.
Piccoli
,
Optimal Synthesis for Control Systems on 2-D Manifolds
(
Springer
,
2004
), Vol.
43
.
9.
A.
Bressan
, “
The generic local time optimal stabilizing control in dimension 3
,”
SIAM J. Control Optim.
24
,
177
190
(
1986
).
10.
C.
Cohen-Tannoudji
,
B.
Diu
, and
F.
Laloe
,
Quantum Mechanics
(
Hermann
,
New York
,
1977
).
11.
D.
D’Alessandro
and
M.
Dahleh
, “
Optimal control of two-level quantum systems
,”
IEEE Trans. Autom. Control
46
,
866
876
(
2001
).
12.
N.
Khaneja
,
R.
Brockett
, and
S. J.
Glaser
, “
Time optimal control in spin systems
,”
Phys. Rev. A
63
,
032308
(
2001
).
13.
M.
Lapert
,
Y.
Zhang
,
S. J.
Glaser
, and
D.
Sugny
, “
Towards the time-optimal control of dissipative spin 1/2 particles in nuclear magnetic resonance
,”
J. Phys. B
44
,
154014
(
2011
).
14.
M.
Levitt
,
Spin Dynamics
, 2nd ed. (
Wiley
,
2008
).
15.
P.
Mason
,
R.
Salmoni
,
U.
Boscain
, and
Y.
Chitour
, “
Limit time optimal syntheses for a control-affine system on S2
,”
SIAM J. Control Optim.
47
,
111
143
(
2008
).
16.
B.
Piccoli
and
H. J.
Sussmann
, “
Regular synthesis and sufficiency conditions for optimality
,”
SIAM J. Control Optim.
39
,
359
410
(
2000
).
17.
L. S.
Pontryagin
,
V. G.
Boltyanskii
,
R. V.
Gamkrelidze
, and
E. F.
Mishchenko
,
The Mathematical Theory of Optimal Processes
,
L. S. Pontryagin Selected Works
(
Gordon and Breach Science Publishers
,
1986
), Vol.
4
.
18.
H.
Sussmann
, “
The structure of time-optimal trajectories for single-input systems in the plane: the C nonsingular case
,”
SIAM J. Control Optim.
25
,
433
465
(
1987
).
19.
H.
Sussmann
, “
Regular synthesis for time-optimal control of single-input analytic systems in the plane
,”
SIAM J. Control Optim.
25
,
1145
1162
(
1987
).
You do not currently have access to this content.