We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator

$\hat{p}_q$
p̂q⁠, and its canonically conjugate deformed position operator
$\hat{x}_q$
x̂q
. A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed.

1.
O.
von Roos
,
Phys. Rev. B
27
,
7547
(
1983
).
2.
F.
Arias de Saavedra
,
J.
Boronat
,
A.
Polls
, and
A.
Fabrocini
,
Phys. Rev. B
50
,
4248
(
1994
).
3.
R.
Khordad
,
Indian J. Phys.
86
,
513
(
2012
).
4.
N.
Aquino
,
G.
Campoy
, and
H.
Yee-Madeira
,
Chem. Phys. Lett.
296
,
111
(
1998
).
5.
6.
D. O.
Richstone
and
M. D.
Potter
,
Astrophys. J.
254
,
451
(
1982
).
7.
R. N.
Costa Filho
,
M. P.
Almeida
,
G. A.
Farias
, and
J. S.
Andrade
, Jr.
,
Phys. Rev. A
84
,
050102
R
(
2011
).
8.
R. N.
Costa Filho
,
G.
Alencar
,
B.-S.
Skagerstam
, and
J. S.
Andrade
, Jr.
,
Europhys. Lett.
101
,
10009
(
2013
).
9.
L.
Nivanen
,
A. Le
Méhauté
, and
Q. A.
Wang
,
Rep. Math. Phys.
52
,
437
(
2003
).
11.
M. A.
Rego-Monteiro
and
F. D.
Nobre
,
Phys. Rev. A
88
,
032105
(
2013
).
12.
M.
Vubangsi
,
M.
Tchoffo
, and
L. C.
Fai
,
Phys. Scr.
89
,
025101
(
2014
).
13.
E. G.
Barbagiovanni
,
D. J.
Lockwood
,
N. L.
Rowell
,
R. N.
Costa Filho
,
I.
Berbezier
,
G.
Amiard
,
L.
Favre
,
A.
Ronda
,
M.
Faustini
, and
D.
Grosso
,
J. Appl. Phys.
115
,
044311
(
2014
).
14.
E. G.
Barbagiovanni
and
R. N. C.
Filho
,
Physica E
63
,
14
(
2014
).
15.
S. H.
Mazharimousavi
,
Phys. Rev. A
85
,
034102
(
2012
);
S. H.
Mazharimousavi
,
Phys. Rev. A
89
,
049904
(E) (
2014
) (erratum).
16.
F. D.
Nobre
,
M. A.
Rego-Monteiro
, and
C.
Tsallis
,
Phys. Rev. Lett.
106
,
140601
(
2011
).
17.
F. D.
Nobre
,
M. A.
Rego-Monteiro
, and
C.
Tsallis
,
Europhys. Lett.
97
,
41001
(
2012
).
18.
A. R.
Plastino
and
C.
Tsallis
,
J. Math. Phys.
54
(
4
),
041505
(
2013
).
19.
M. A.
Rego-Monteiro
and
F. D.
Nobre
,
J. Math. Phys.
54
,
103302
(
2013
).
20.
C.
Tsallis
,
Quimica Nova
17
,
468
(
1994
).
21.
E. P.
Borges
,
J. Phys. A: Math. Gen.
31
,
5281
(
1998
).
22.
T. C. P.
Lobao
,
P. G. S.
Cardoso
,
S. T. R.
Pinho
, and
E. P.
Borges
,
Braz. J. Phys.
39
,
402
(
2009
).
23.
24.
C.
Tsallis
,
J. Stat. Phys.
52
,
479
(
1988
).
25.
S.
Cruz y Cruz
and
O.
Rosas-Ortiz
,
SIGMA
9
,
004
(
2013
).
26.
A. G. M.
Schmidt
,
Phys. Lett. A
353
,
459
(
2006
).
You do not currently have access to this content.