In this paper, we study a quasilinear Choquard equation involving the p-laplacian operator and a potential function V. Under suitable assumptions on V and the nonlinearity, we prove the existence, multiplicity, and concentration of solutions for the equation by variational methods.
REFERENCES
1.
N.
Ackermann
, “On a periodic Schrödinger equation with nonlocal superlinear part
,” Math. Z.
248
, 423
–443
(2004
).2.
C. O.
Alves
, “Existence and multiplicity of solution for a class of quasilinear equations
,” Adv. Nonlinear Studies
5
, 73
–86
(2005
).3.
C. O.
Alves
and M. A. S.
Souto
, “On existence and concentration behavior of ground state solutions for a class of problems with critical growth
,” Commun. Pure Appl. Anal.
1
, 417
–431
(2002
).4.
C. O.
Alves
and G. M.
Figueiredo
, “Existence and multiplicity of positive solutions to a p-Laplacian equation in
,” $\mathbb {R}^N$
Differ. Integral Eq.
19
, 143
–162
(2006
).5.
A.
Ambrosetti
, M.
Badiale
, and S.
Cingolani
, “Semiclassical states of nonlinear Schrödinger equations
,” Arch. Ration. Mech. Anal.
140
, 285
–300
(1997
).6.
A.
Ambrosetti
, A.
Malchiodi
, and S.
Secchi
, “Multiplicity results for some nonlinear Schrödinger equations with potentials
,” Arch. Ration. Mech. Anal.
159
, 253
–271
(2001
).7.
A.
Ambrosetti
and A.
Malchiodi
, “Concentration phenomena for nonlinear Schrödinger equations: Recent results and new perspectives
,” Perspectives in Nonlinear Partial Differential Equations
, Contemporary Mathematics
Vol. 446
, edited by H.
Berestycki
, M.
Bertsch
, F. E.
Browder
, L.
Nirenberg
, L. A.
Peletier
, and L.
Véron
(Amer. Math. Soc.
, Providence, RI
, 2007
), pp. 19
–30
.8.
T.
Bartsch
and Z. Q.
Wang
, “Existence and multiplicity results for some superlinear elliptic problems on
,” $\mathbb {R}^N$
Commun. Partial Differ. Eq.
20
, 1725
–1741
(1995
).9.
S.
Cingolani
and M.
Lazzo
, “Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions
,” J. Diff. Eq.
160
, 118
–138
(2000
).10.
S.
Cingolani
and M.
Lazzo
, “Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations
,” Topol. Meth. Nonlinear Anal.
10
, 1
–13
(1997
).11.
L.
Bergé
and A.
Couairon
, “Nonlinear propagation of self-guided ultra-short pulses in ionized gases
,” Phys. Plasmas
7
, 210
–230
(2000
).12.
J.
Byeon
and Z. Q.
Wang
, “Standing waves with a critical frequency for nonlinear Schrödinger equations II
,” Calc. Var. Part. Differ. Eq.
18
, 207
–219
(2003
).13.
S.
Cingolani
, M.
Clapp
, and S.
Secchi
, “Multiple solutions to a magnetic nonlinear Choquard equation
,” Z. Angew. Math. Phys.
63
, 233
–248
(2012
).14.
S.
Cingolani
, S.
Secchi
, and M.
Squassina
, “Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities
,” Proc. R. Soc. Edinburgh Sect. A
140
, 973
–1009
(2010
).15.
M.
Clapp
and D.
Salazar
, “Positive and sign changing solutions to a nonlinear Choquard equation
,” J. Math. Anal. Appl.
407
, 1
–15
(2013
).16.
F.
Dalfovo
, S.
Giorgini
, L. P.
Pitaevskii
, and S.
Stringari
, “Theory of Bose-Einstein condensation in trapped gases
,” Rev. Mod. Phys.
71
, 463
–512
(1999
).17.
L.
Damascelli
, “Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonity results
,” Ann. Inst. H. Poincaré Anal. Non Linéaire
15
, 493
–516
(1998
).18.
Y. H.
Ding
and F. H.
Lin
, “Solutions of perturbed Schrödinger equations with critical nonlinearity
,” Calc. Var. Part. Differ. Eq.
30
, 231
–249
(2007
).19.
A.
Floer
and A.
Weinstein
, “Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
,” J. Funct. Anal.
69
, 397
–408
(1986
).20.
E. H.
Lieb
, “Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation
,” Stud. Appl. Math.
57
, 93
–105
(1976
/77).21.
E.
Lieb
and M.
Loss
, “Analysis
,” Graduate Studies in Mathematics
(AMS
, Providence, Rhode Island
, 2001
).22.
P. L.
Lions
, “The Choquard equation and related questions
,” Nonlinear Anal.
4
, 1063
–1072
(1980
).23.
A. G.
Litvak
, “Self-focusing of powerful light beams by thermal effects
,” JETP Lett.
4
, 230
–232
(1966
).24.
G.
Li
, “Some properties of weak solutions of nonlinear scalar field equations
,” Annales Acad. Sci. Fenincae A
14
, 27
–36
(1989
).25.
L.
Ma
and L.
Zhao
, “Classification of positive solitary solutions of the nonlinear Choquard equation
,” Arch. Ration. Mech. Anal.
195
, 455
–467
(2010
).26.
G.
Menzala
, “On regular solutions of a nonlinear equation of Choquard's type
,” Proc. R. Soc. Edinburgh Sect. A
86
, 291
–301
(1980
).27.
J.
Moser
, “A new proof De Giorgi's theorem concerning the regularity problem for elliptic differential equations
,” Commun. Pure Appl. Math.
13
, 457
–468
(1960
).28.
I. M.
Moroz
, R.
Penrose
, and P.
Tod
, “Spherically-symmetric solutions of the Schrödinger-Newton equations
,” Class. Quantum Grav.
15
, 2733
–2742
(1998
).29.
V.
Moroz
and J.
Van Schaftingen
, “Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics
,” J. Funct. Anal.
265
, 153
–184
(2013
).30.
V.
Moroz
and J.
Van Schaftingen
, “Semi-classical states for the Choquard equation
,” Calc. Var.
(published online) (2014
).31.
Y. G.
Oh
, “Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)α
,” Commun. Partial Differ. Eq.
13
, 1499
–1519
(1988
).32.
Y. G.
Oh
, “On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
,” Commun. Math. Phys.
131
, 223
–253
(1990
).33.
S.
Pekar
, Untersuchung über die Elektronentheorie der Kristalle
(Akademie Verlag
, Berlin
, 1954
).34.
M.
del Pino
and P.
Felmer
, “Multipeak bound states of nonlinear Schrödinger equations
,” Ann. Inst. H. Poincaré Anal. Non Linéaire
15
, 127
–149
(1998
).35.
M.
del Pino
and P.
Felmer
, “Semi-classical states of nonlinear Schrödinger equations: a variational reduction method
,” Math. Ann.
324
, 1
–32
(2002
).36.
P. L.
Lions
, “The concentration-compactness principle in the calculus of variation. The locally compact case, part 2
,” Ann. Inst. H. Poincaré Non Linéaire
1
, 223
–283
(1984
).37.
G.
Li
, “Some properties of weak solutions of nonlinear scalar field equations
,” Annal. Acad. Sci. Fenincae A
14
, 27
–36
(1989
).38.
C.
Mercuri
and M.
Willem
, “A global compactness result for the p-laplacian involving critical nonlinearities
,” Discrete Contin. Dyn. Syst.
28
, 469
–493
(2010
).39.
P.
Rabinowitz
, “On a class of nonlinear Schrödinger equations
,” Z. Ang. Math. Phys.
43
, 270
–291
(1992
).40.
S.
Secchi
, “A note on Schrödinger-Newton systems with decaying electric potential
,” Nonlinear Anal.
72
, 3842
–3856
(2010
).41.
N. S.
Trudinger
, “On Harnack type inequalities and their applications to quasilinear elliptic equations
,” Commun. Pure Appl. Math.
20
, 721
–747
(1967
).42.
J.
Wei
and M.
Winter
, “Strongly interacting bumps for the Schrödinger-Newton equations
,” J. Math. Phys.
50
, 012905
(2009
).43.
X.
Wang
, “On concentration of positive bound states of nonlinear Schrödinger equations
,” Commun. Math. Phys.
153
, 229
–244
(1993
).44.
45.
M.
Yang
and Y.
Ding
, “Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part
,” Commun. Pure Appl. Anal.
12
, 771
–783
(2013
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.