In this paper, we study a quasilinear Choquard equation involving the p-laplacian operator and a potential function V. Under suitable assumptions on V and the nonlinearity, we prove the existence, multiplicity, and concentration of solutions for the equation by variational methods.

1.
N.
Ackermann
, “
On a periodic Schrödinger equation with nonlocal superlinear part
,”
Math. Z.
248
,
423
443
(
2004
).
2.
C. O.
Alves
, “
Existence and multiplicity of solution for a class of quasilinear equations
,”
Adv. Nonlinear Studies
5
,
73
86
(
2005
).
3.
C. O.
Alves
and
M. A. S.
Souto
, “
On existence and concentration behavior of ground state solutions for a class of problems with critical growth
,”
Commun. Pure Appl. Anal.
1
,
417
431
(
2002
).
4.
C. O.
Alves
and
G. M.
Figueiredo
, “
Existence and multiplicity of positive solutions to a p-Laplacian equation in
$\mathbb {R}^N$
RN
,”
Differ. Integral Eq.
19
,
143
162
(
2006
).
5.
A.
Ambrosetti
,
M.
Badiale
, and
S.
Cingolani
, “
Semiclassical states of nonlinear Schrödinger equations
,”
Arch. Ration. Mech. Anal.
140
,
285
300
(
1997
).
6.
A.
Ambrosetti
,
A.
Malchiodi
, and
S.
Secchi
, “
Multiplicity results for some nonlinear Schrödinger equations with potentials
,”
Arch. Ration. Mech. Anal.
159
,
253
271
(
2001
).
7.
A.
Ambrosetti
and
A.
Malchiodi
, “
Concentration phenomena for nonlinear Schrödinger equations: Recent results and new perspectives
,”
Perspectives in Nonlinear Partial Differential Equations
,
Contemporary Mathematics
Vol.
446
, edited by
H.
Berestycki
,
M.
Bertsch
,
F. E.
Browder
,
L.
Nirenberg
,
L. A.
Peletier
, and
L.
Véron
(
Amer. Math. Soc.
,
Providence, RI
,
2007
), pp.
19
30
.
8.
T.
Bartsch
and
Z. Q.
Wang
, “
Existence and multiplicity results for some superlinear elliptic problems on
$\mathbb {R}^N$
RN
,”
Commun. Partial Differ. Eq.
20
,
1725
1741
(
1995
).
9.
S.
Cingolani
and
M.
Lazzo
, “
Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions
,”
J. Diff. Eq.
160
,
118
138
(
2000
).
10.
S.
Cingolani
and
M.
Lazzo
, “
Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations
,”
Topol. Meth. Nonlinear Anal.
10
,
1
13
(
1997
).
11.
L.
Bergé
and
A.
Couairon
, “
Nonlinear propagation of self-guided ultra-short pulses in ionized gases
,”
Phys. Plasmas
7
,
210
230
(
2000
).
12.
J.
Byeon
and
Z. Q.
Wang
, “
Standing waves with a critical frequency for nonlinear Schrödinger equations II
,”
Calc. Var. Part. Differ. Eq.
18
,
207
219
(
2003
).
13.
S.
Cingolani
,
M.
Clapp
, and
S.
Secchi
, “
Multiple solutions to a magnetic nonlinear Choquard equation
,”
Z. Angew. Math. Phys.
63
,
233
248
(
2012
).
14.
S.
Cingolani
,
S.
Secchi
, and
M.
Squassina
, “
Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities
,”
Proc. R. Soc. Edinburgh Sect. A
140
,
973
1009
(
2010
).
15.
M.
Clapp
and
D.
Salazar
, “
Positive and sign changing solutions to a nonlinear Choquard equation
,”
J. Math. Anal. Appl.
407
,
1
15
(
2013
).
16.
F.
Dalfovo
,
S.
Giorgini
,
L. P.
Pitaevskii
, and
S.
Stringari
, “
Theory of Bose-Einstein condensation in trapped gases
,”
Rev. Mod. Phys.
71
,
463
512
(
1999
).
17.
L.
Damascelli
, “
Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonity results
,”
Ann. Inst. H. Poincaré Anal. Non Linéaire
15
,
493
516
(
1998
).
18.
Y. H.
Ding
and
F. H.
Lin
, “
Solutions of perturbed Schrödinger equations with critical nonlinearity
,”
Calc. Var. Part. Differ. Eq.
30
,
231
249
(
2007
).
19.
A.
Floer
and
A.
Weinstein
, “
Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential
,”
J. Funct. Anal.
69
,
397
408
(
1986
).
20.
E. H.
Lieb
, “
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation
,”
Stud. Appl. Math.
57
,
93
105
(
1976
/77).
21.
E.
Lieb
and
M.
Loss
, “
Analysis
,”
Graduate Studies in Mathematics
(
AMS
,
Providence, Rhode Island
,
2001
).
22.
P. L.
Lions
, “
The Choquard equation and related questions
,”
Nonlinear Anal.
4
,
1063
1072
(
1980
).
23.
A. G.
Litvak
, “
Self-focusing of powerful light beams by thermal effects
,”
JETP Lett.
4
,
230
232
(
1966
).
24.
G.
Li
, “
Some properties of weak solutions of nonlinear scalar field equations
,”
Annales Acad. Sci. Fenincae A
14
,
27
36
(
1989
).
25.
L.
Ma
and
L.
Zhao
, “
Classification of positive solitary solutions of the nonlinear Choquard equation
,”
Arch. Ration. Mech. Anal.
195
,
455
467
(
2010
).
26.
G.
Menzala
, “
On regular solutions of a nonlinear equation of Choquard's type
,”
Proc. R. Soc. Edinburgh Sect. A
86
,
291
301
(
1980
).
27.
J.
Moser
, “
A new proof De Giorgi's theorem concerning the regularity problem for elliptic differential equations
,”
Commun. Pure Appl. Math.
13
,
457
468
(
1960
).
28.
I. M.
Moroz
,
R.
Penrose
, and
P.
Tod
, “
Spherically-symmetric solutions of the Schrödinger-Newton equations
,”
Class. Quantum Grav.
15
,
2733
2742
(
1998
).
29.
V.
Moroz
and
J.
Van Schaftingen
, “
Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics
,”
J. Funct. Anal.
265
,
153
184
(
2013
).
30.
V.
Moroz
and
J.
Van Schaftingen
, “
Semi-classical states for the Choquard equation
,”
Calc. Var.
(published online) (
2014
).
31.
Y. G.
Oh
, “
Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)α
,”
Commun. Partial Differ. Eq.
13
,
1499
1519
(
1988
).
32.
Y. G.
Oh
, “
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
,”
Commun. Math. Phys.
131
,
223
253
(
1990
).
33.
S.
Pekar
,
Untersuchung über die Elektronentheorie der Kristalle
(
Akademie Verlag
,
Berlin
,
1954
).
34.
M.
del Pino
and
P.
Felmer
, “
Multipeak bound states of nonlinear Schrödinger equations
,”
Ann. Inst. H. Poincaré Anal. Non Linéaire
15
,
127
149
(
1998
).
35.
M.
del Pino
and
P.
Felmer
, “
Semi-classical states of nonlinear Schrödinger equations: a variational reduction method
,”
Math. Ann.
324
,
1
32
(
2002
).
36.
P. L.
Lions
, “
The concentration-compactness principle in the calculus of variation. The locally compact case, part 2
,”
Ann. Inst. H. Poincaré Non Linéaire
1
,
223
283
(
1984
).
37.
G.
Li
, “
Some properties of weak solutions of nonlinear scalar field equations
,”
Annal. Acad. Sci. Fenincae A
14
,
27
36
(
1989
).
38.
C.
Mercuri
and
M.
Willem
, “
A global compactness result for the p-laplacian involving critical nonlinearities
,”
Discrete Contin. Dyn. Syst.
28
,
469
493
(
2010
).
39.
P.
Rabinowitz
, “
On a class of nonlinear Schrödinger equations
,”
Z. Ang. Math. Phys.
43
,
270
291
(
1992
).
40.
S.
Secchi
, “
A note on Schrödinger-Newton systems with decaying electric potential
,”
Nonlinear Anal.
72
,
3842
3856
(
2010
).
41.
N. S.
Trudinger
, “
On Harnack type inequalities and their applications to quasilinear elliptic equations
,”
Commun. Pure Appl. Math.
20
,
721
747
(
1967
).
42.
J.
Wei
and
M.
Winter
, “
Strongly interacting bumps for the Schrödinger-Newton equations
,”
J. Math. Phys.
50
,
012905
(
2009
).
43.
X.
Wang
, “
On concentration of positive bound states of nonlinear Schrödinger equations
,”
Commun. Math. Phys.
153
,
229
244
(
1993
).
44.
M.
Willem
,
Minimax Theorems
(
Birkhäuser
,
1996
).
45.
M.
Yang
and
Y.
Ding
, “
Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part
,”
Commun. Pure Appl. Anal.
12
,
771
783
(
2013
).
You do not currently have access to this content.