Motivated by the paper by Sutcliffe and Woolley [“

On the quantum theory of molecules
,” J. Chem. Phys.137, 22A544 (2012)], we present the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation for molecules. Based on mathematical works on this approximation for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of some rigorous results obtained up to now. We also point out the main difficulties mathematicians are trying to overcome and speculate on further developments. The mathematical approach does not fit exactly to the common use of the approximation in Physics and Chemistry. We criticize the latter and comment on the differences, contributing in this way to the discussion on the Born-Oppenheimer approximation initiated by Sutcliffe and Woolley. The paper neither contains mathematical statements nor proofs. Instead, we try to make accessible mathematically rigourous results on the subject to researchers in Quantum Chemistry or Physics.

1.
W. O.
Amrein
,
A.
Boutet de Monvel
, and
V.
Georgescu
,
C0-Groups, Commutator Methods and Spectral Theory of N-body Hamiltonians
(
Birkhäuser
,
1996
).
2.
M.
Benchaou
and
A.
Martinez
, “
Estimations exponentielles en théorie de la diffusion pour des opérateurs de Schrödinger matriciels
,”
Ann. Inst. Henri Poincaré, Sect. A
71
(
6
),
561
594
(
1999
); see also http://www.numdam.org/ for Numdam.
3.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon
,
Oxford
,
1954
).
4.
M.
Born
and
R.
Oppenheimer
, “
Zur Quantentheorie der Molekeln
,”
Ann. Phys.
389
,
457
(
1927
).
An English version is available on B. T. Sutcliffe's homepage at http://www.ulb.ac.be/cpm/people/scientists/bsutclif/main.html.
5.
J.-M.
Combes
, “
On the Born-Oppenheimer approximation
,”
International Symposium on Mathematical Problems in Theoretical Physics
,
Lecture Notes in Physics
(
Springer
,
Berlin
,
1975
), Vol.
39
, pp.
467
471
.
6.
J.-M.
Combes
,
P.
Duclos
, and
R.
Seiler
, “
The Born-Oppenheimer Approximation
,” in
Rigorous Atomic and Molecular Physics
, edited by
G.
Velo
and
A.
Wightman
(
Plenum Press
,
New York
,
1981
), pp.
185
212
.
7.
H. L.
Cycon
,
R. G.
Froese
,
W.
Kirsch
, and
B.
Simon
,
Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry
(
Springer
,
1987
).
8.
J.-M.
Combes
and
R.
Seiler
, “
Spectral properties of atomic and molecular systems
,”
Quantum Dynamics of Molecules
,
NATO Advanced Study Institutes Series, Series B: Physics
(
Plenum
,
New York/London
,
1980
), Vol
57
, pp.
435
482
.
9.
T.
Duyckaerts
,
C.
Fermanian Kammerer
, and
T.
Jecko
, “
Degenerated codimension 1 crossing and resolvent estimates
,”
Asymptot. Anal.
65
(
3–4
),
147
174
(
2009
); e-print arXiv:0811.2103.
10.
C.
Fermanian Kammerer
and
P.
Gérard
, “
Mesures semi-classiques et croisements de modes
,”
Bull. Soc. Math. France
130
(
1
),
123
168
(
2002
).
11.
C.
Fermanian Kammerer
and
V.
Rousse
, “
Resolvent estimates for a Schrödinger operator with matrix-valued potential presenting eigenvalue crossings. Application to Strichartz estimates
,”
Commun. Part. Differ. Equ.
33
(
1
),
19
44
(
2008
).
12.
S.
Fujiié
,
C.
Lasser
, and
L.
Nédélec
, “
Semiclassical resonances for a two-level Schrödinger operator with a conical intersection
,” e-print arXiv:math/0511724.
13.
G.
Hagedorn
, “
A time-dependent Born-Oppenheimer approximation
,”
Commun. Math. Phys.
77
,
1
19
(
1980
); see also http://projecteuclid.org for project Euclid.
14.
G.
Hagedorn
, “
High order corrections to the time-dependent Born-Oppenheimer approximation I: Smooth potentials
,”
Ann. Math.
124
(
3
),
571
590
(
1986
);
G.
Hagedorn
,
Ann. Math.
Erratum,
126
,
219
(
1987
).
15.
G.
Hagedorn
, “
High order corrections to the time-independent Born-Oppenheimer approximation I: Smooth potentials
,”
Ann. Inst. Henri Poincaré
47
(
1
),
1
16
(
1987
); see also http://www.numdam.org/ for Numdam.
16.
G.
Hagedorn
, “
High order corrections to the time-independent Born-Oppenheimer approximation II: Diatomic Coulomb systems
,”
Commun. Math. Phys.
116
(
1
),
23
44
(
1988
); see also http://projecteuclid.org for project Euclid.
17.
G.
Hagedorn
, “
High order corrections to the time-dependent Born-Oppenheimer approximation II: Coulomb systems
,”
Commun. Math. Phys.
117
(
3
),
23
44
(
1988
); see also http://projecteuclid.org for project Euclid.
18.
G. A.
Hagedorn
, “
Proof of the Landau-Zener formula in an adiabatic limit with small eigenvalue gaps
,”
Commun. Math. Phys.
136
(
3
),
433
449
(
1991
); see also http://projecteuclid.org for project Euclid.
19.
G. A.
Hagedorn
,
Molecular Propagation Through Electron Energy Level Crossings
,
Memoirs of the American Mathematical Society 536
(
AMS
,
1994
), Vol.
111
.
20.
S. M.
Hughes
and
G. A.
Hagedorn
, “
Diatomic molecules with large angular momentum in the Born-Oppenheimer approximation
,”
J. Phys. A
42
(
3
),
035305
(
2009
).
21.
G.
Hagedorn
and
A.
Joye
, “
Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation
,”
Ann. Inst. Henri Poincare, Sect. A
68
(
1
),
85
134
(
1998
); see also http://www.numdam.org/ for Numdam.
22.
G.
Hagedorn
and
A.
Joye
, “
Molecular propagation through small avoided crossings of electron energy levels
,”
Rev. Math. Phys.
11
(
1
),
41
101
(
1999
).
23.
G.
Hagedorn
and
A.
Joye
, “
A time-dependent Born–Oppenheimer approximation with exponentially small error estimates
,”
Commun. Math. Phys.
223
(
3
),
583
626
(
2001
); see also http://projecteuclid.org for project Euclid.
24.
G.
Hagedorn
and
A.
Joye
, “
Determination of non-adiabatic scattering wave functions in a Born-Oppenheimer model
,”
Ann. Henri Poincaré
6
(
5
),
937
990
(
2005
); e-print arXiv:math-ph/0406041.
25.
G.
Hagedorn
and
A.
Joye
, “
Mathematical Analysis of Born-Oppenheimer Approximations
,” in
Spectral Theory and Mathematical Physics
, edited by
F.
Gesztesy
,
P.
Deift
,
C.
Calvez
,
P.
Perry
, and
G. W.
Schlag
(
Oxford University Press
,
London
,
2007
), p.
203
.
26.
G.
Hagedorn
and
A.
Joye
, “
A mathematical theory for vibrational levels associated with hydrogen bonds. I. The symmetric case
,”
Commun. Math. Phys.
274
(
3
),
691
715
(
2007
); see also http://projecteuclid.org for project Euclid.
27.
G.
Hagedorn
and
A.
Joye
, “
Vibrational levels associated with hydrogen bonds and semiclassical Hamiltonian normal forms
,”
Adventures in Mathematical Physics
, Contemporary Mathematics (
American Mathematical Society
,
Providence, RI
,
2007
), pp.
139
151
.
28.
G.
Hagedorn
and
A.
Joye
, “
A mathematical theory for vibrational levels associated with hydrogen bonds. II. The non-symmetric case
,”
Rev. Math. Phys.
21
(
2
),
279
313
(
2009
); e-print arXiv:0805.4526.
29.
G.
Hagedorn
and
A.
Joye
, “
Non-adiabatic transitions in a simple Born-Oppenheimer scattering system
,”
Mathematical Results in Quantum Physics
(
World Sci. Publ.
,
Hackensack, NJ
,
2011
), pp.
208
212
.
30.
G.
Hagedorn
and
J. H.
Toloza
, “
Exponentially accurate semiclassical asymptotics of low-lying eigenvalues for 2 × 2 matrix Schrödinger operators
,”
J. Math. Anal. Appl.
312
(
1
),
300
329
(
2005
).
31.
G.
Hagedorn
,
V.
Rousse
, and
S. W. J.
Jilcott
, “
The AC Stark effect, time-dependent Born-Oppenheimer approximation, and Franck-Condon factors
,”
Ann. Henri Poincaré
7
(
6
),
1065
1083
(
2006
).
32.
W.
Hunziker
, “
Distortion analyticity and molecular resonance curves
,”
Ann. Inst. Henri Poincaré, Sect. A
45
(
4
),
339
358
(
1986
); see also http://www.numdam.org/ fior Numdam.
33.
T.
Jecko
, “
Estimations de la résolvante pour une molécule diatomique dans l'approximation de Born-Oppenheimer
,”
Commun. Math. Phys.
195
(
3
),
585
612
(
1998
); see http://jecko.u-cergy.fr/prepublications.html.
34.
T.
Jecko
, “
Classical limit of elastic scattering operator of a diatomic molecule in the Born-Oppenheimer approximation
,”
Ann. Inst. Henri Poincaré, Sect. A
69
(
1
),
83
131
(
1998
); see also http://www.numdam.org/ for Numdam.
35.
T.
Jecko
, “
Approximation de Born-Oppenheimer de sections efficaces totales diatomiques
,”
Asymptot. Anal.
24
,
1
35
(
2000
); see http://jecko.u-cergy.fr/prepublications.html.
36.
T.
Jecko
, “
Non-trapping condition for semiclassical Schrödinger operators with matrix-valued potentials
,”
Math. Phys. Electron. J.
11
(
2
) (
2005
);
T.
Jecko
,
Math. Phys. Electron. J.
Erratum,
13
(
3
) (
2007
).
37.
T.
Jecko
, “
A new proof of the analyticity of the electronic density of molecules
,”
Lett. Math. Phys.
93
(
1
),
73
83
(
2010
); e-print arXiv:0904.0221.
38.
T.
Jecko
,
M.
Klein
, and
X. P.
Wang
, “
Existence and Born-Oppenheimer asymptotics of the total scattering cross-section in ion-atom collisions
,”
Long Time Behaviour of Classical and Quantum Systems
, in Proceedings of the Bologna AP-TEX International Conference, September 1999, edited by
A.
Martinez
and
S.
Graffi
(
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
,
2001
); see http://jecko.u-cergy.fr/prepublications.html.
39.
T.
Jecko
and
V.
Sordoni
, “
Scattering of diatomic molecules and Born-Oppenheimer approximation
” (to be published).
40.
A.
Jensen
and
T.
Kato
, “
Spectral properties of Schrödinger operators and time decay of wave functions
,”
Duke Math. J.
46
,
583
611
(
1979
).
41.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
1995
).
42.
M.
Klein
,
A.
Martinez
,
R.
Seiler
, and
X. P.
Wang
, “
On the Born-Oppenheimer expansion for polyatomic molecules
,”
Commun. Math. Phys.
143
(
3
),
607
639
(
1992
); see also http://projecteuclid.org for project Euclid.
43.
M.
Klein
,
A.
Martinez
, and
X. P.
Wang
, “
On the Born-Oppenheimer approximation of wave operators in molecular scattering theory
,”
Commun. Math. Phys.
152
,
73
95
(
1993
); see also http://projecteuclid.org for project Euclid.
44.
M.
Klein
,
A.
Martinez
, and
X. P.
Wang
, “
On the Born-Oppenheimer approximation of diatomic wave operators II. Singular potentials
,”
J. Math. Phys.
38
(
3
),
1373
1396
(
1997
).
45.
P.-O.
Löwdin
, “
On the long way from the Coulombic Hamiltonian to the electronic structure of molecules
,”
Pure Appl. Chem.
61
,
2065
(
1989
).
46.
A.
Martinez
, “
Développement asymptotiques et efffet tunnel dans l'approximation de Born-Oppenheimer
,”
Ann. Inst. Henri Poincaré
49
,
239
257
(
1989
); see also http://www.numdam.org/ for Numdam.
47.
A.
Martinez
, “
Résonances dans l'approximation de Born-Oppenheimer. I. (French) [Resonances in the Born-Oppenheimer approximation. I]
,”
J. Differ. Equ.
91
(
2
),
204
234
(
1991
).
48.
A.
Martinez
, “
Résonances dans l'approximation de Born-Oppenheimer. II. Largeur des résonances. (French) [Resonances in the Born-Oppenheimer approximation. II. Resonance width]
,”
Commun. Math. Phys.
135
(
3
),
517
530
(
1991
); see also http://projecteuclid.org for project Euclid.
49.
A.
Martinez
, “
Eigenvalues and resonances of polyatomic molecules in the Born-Oppenheimer approximation
,”
Schrödinger Operators
,
Lecture Notes in Physics
(
Springer
,
Berlin
,
1992
), Vol.
403
, pp.
145
152
.
50.
A.
Martinez
and
B.
Messerdi
, “
Resonances of diatomic molecules in the Born-Oppenheimer approximation
,”
Commun. Part. Differ. Equ.
19
,
1139
1162
(
1994
).
51.
A.
Martinez
and
V.
Sordoni
, “
A general reduction scheme for the time-dependent Born-Oppenheimer approximation
,”
C. R. Math. Acad. Sci. Paris
334
(
3
),
185
188
(
2002
).
52.
A.
Martinez
and
V.
Sordoni
, “
Twisted pseudodifferential calculus and application to the quantum evolution of molecules
,”
Mem. Am. Math. Soc.
200
,
936
(
2009
); e-print arXiv:0809.3663.
53.
A.
Messiah
,
Quantum Mechanics
(
North-Holland
,
Amsterdam
,
1960
), Vol.
II
.
54.
L.
Nédélec
, “
Resonances for matrix Schrödinger operators
,”
Duke Math. J.
106
(
2
),
209
236
(
2001
).
55.
G.
Panati
,
H.
Spohn
, and
S.
Teufel
, “
The time-dependent Born-Oppenheimer approximation
,”
ESIAM: Math. Modell. Numer. Anal.
41
,
297
314
(
2007
); e-print arXiv:0712.4369.
56.
A.
Raphaelian
, “
Ion-atom scattering within a Born-Oppenheimer framework
,” Ph.D. dissertation (
Technische Universität Berlin
,
1986
).
57.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics, Vol. I: Functional Analysis
(
Academic Press
,
1975
).
58.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics, Vol. II: Fourier Analysis, Self-adjointness
(
Academic Press
,
1975
).
59.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics, Vol. III: Scattering theory
(
Academic Press
,
1979
).
60.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics, Vol. IV: Analysis of operators
(
Academic Press
,
1978
).
61.
V.
Rousse
, “
Landau-Zener transitions for eigenvalue avoided crossings in the adiabatic and Born-Oppenheimer approximations
,”
Asymptot. Anal.
37
(
3–4
),
293
328
(
2004
).
62.
H.
Spohn
and
S.
Teufel
, “
Adiabatic decoupling and time-dependent Born-Oppenheimer theory
,”
Commun. Math. Phys.
224
(
1
),
113
132
(
2001
); e-print arXiv:math-ph/0104024.
63.
B. T.
Sutcliffe
and
R. G.
Woolley
, “
On the quantum theory of molecules
,”
J. Chem. Phys.
137
,
22A544
(
2012
); e-print arXiv:1206.4239.
64.
B. T.
Sutcliffe
and
R. G.
Woolley
,
The Potential Energy Surface in Molecular Quantum Mechanics
,
Progress in Theoretical Chemistry and Physics
, edited by
M.
Hotokka
,
E. J.
Brändas
,
J.
Maruani
, and
G.
Delgado-Barrio
(
Springer
,
2013
), Vol.
27
, pp.
3
40
; e-print arXiv:1303.3151.
65.
B. T.
Sutcliffe
and
R. G.
Woolley
, “
Comments on “On the quantum theory of molecules
,”
J. Chem. Phys.
140
,
037101
(
2014
).
66.
M. E.
Taylor
,
Partial Differential Equations 1
(
Springer
1996
).
67.
M. E.
Taylor
,
Partial Differential Equations 2
(
Springer
,
1996
).
68.
S.
Teufel
and
J.
Wachsmuth
, “
Spontaneous decay of resonant energy levels for molecules with moving nuclei
,”
Commun. Math. Phys.
315
(
3
),
699
738
(
2012
); e-print arXiv:1109.0447.
69.
X. P.
Wang
, “
Asymptotic behaviour of resolvent of N-body Schrödinger operators near a threshold
,”
Ann. Henri Poincaré
4
,
553
600
(
2003
); Preprint available on http://www.math.sciences.univ-nantes.fr/~wang/.
70.
X. P.
Wang
, “
On the existence of the N-body Efimov effect
,”
J. Funct. Anal.
209
,
137
161
(
2004
); see http://www.math.sciences.univ-nantes.fr/~wang/.
71.
S.
Weinberg
,
Lectures on Quantum Mechanics
(
Cambridge University Press
,
2012
).
72.
D. R.
Yafaev
, “
On the theory of the discrete spectrum of the three-particle Schrödinger operator
,”
Math. USSR-Sb
23
,
535
559
(
1974
).
You do not currently have access to this content.