Useful expressions of the derivatives, to any order, of Pochhammer and reciprocal Pochhammer symbols with respect to their arguments are presented. They are building blocks of a procedure, recently suggested, for obtaining the ɛ-expansion of functions of the hypergeometric class related to Feynman integrals. The procedure is applied to some examples of such kind of functions taken from the literature.
REFERENCES
1.
F.
Jegerlehner
, M. Yu.
Kalmykov
, and O.
Veretin
, Nucl. Phys. B
658
, 49
(2003
).2.
A. I.
Davydychev
and M. Yu.
Kalmykov
, Nucl. Phys. B
699
, 3
(2004
).3.
M. Yu.
Kalmykov
, J. High Energy Phys.
04
, 056
(2006
).4.
M. Yu.
Kalmykov
, B. F. L.
Ward
, and S.
Yost
, J. High Energy Phys.
02
, 040
(2007
).5.
M. Yu.
Kalmykov
, B. F. L.
Ward
, and S.
Yost
, J. High Energy Phys.
11
, 009
(2007
).6.
M. Yu.
Kalmykov
and B. A.
Kniehl
, Phys. Part. Nucl.
41
, 942
(2010
).7.
S. A.
Yost
, V. V.
Bytev
, M. Yu.
Kalmykov
, B. A.
Kniehl
, and B. F. L.
Ward
, “The epsilon expansion of Feynman diagrams via hypergeometric functions and differential reduction
,” in Proceedings of the DPF-2011 Conference
, Providence, RI
, 8–13 August 2011
; e-print arXiv:1110.0210.8.
S.
Moch
, P.
Uwer
, and S.
Weinzierl
, J. Math. Phys.
43
, 3363
(2002
).9.
S.
Weinzierl
, J. Math. Phys.
45
, 2656
(2004
).10.
S.
Weinzierl
, Comput. Phys. Commun.
145
, 357
(2002
).11.
S.
Moch
and P.
Uwer
, Comput. Phys. Commun.
174
, 759
(2006
).12.
T.
Huber
and D.
Maître
, Comput. Phys. Commun.
175
, 122
(2006
).13.
T.
Huber
and D.
Maître
, Comput. Phys. Commun.
178
, 755
(2008
).14.
Z. W.
Huang
and J.
Liu
, Comput. Phys. Commun.
184
, 1973
(2013
).15.
V. V.
Bytev
, M. Yu.
Kalmykov
, and B. A.
Kniehl
, Comput. Phys. Commun.
184
, 2332
(2013
).16.
D.
Greynat
and J.
Sesma
, Comput. Phys. Commun.
185
, 472
(2014
).17.
L. U.
Ancarani
and G.
Gasaneo
, J. Math. Phys.
49
, 063508
(2008
);L. U.
Ancarani
and G.
Gasaneo
, J. Phys. A: Math. Theor.
42
, 395208
(2009
);L. U.
Ancarani
and G.
Gasaneo
, J. Phys. A: Math. Theor.
43
, 085210
(2010
).18.
V.
Del Duca
, C.
Duhr
, E. W. N.
Glover
, and V. A.
Smirnov
, J. High Energy Phys.
01
(2010
) 042
.19.
O. V.
Tarasov
, Phys. Lett. B
638
, 195
(2006
).20.
Y. L.
Luke
, The Special Functions and Their Approximations
(Academic Press
, New York
, 1969
), Vol. I
.21.
NIST Handbook of Mathematical Functions
, edited by F. W. J.
Olver
, D. W.
Lozier
, R. F.
Boisvert
, and C. W.
Clark
(Cambridge University Press
, New York
, 2010
), see free on-line access at http://dlmf.nist.gov.22.
23.
M. W.
Coffey
, “Series representations of the Riemann and Hurwitz zeta functions and series and integral representations of the first Stieltjes constant
,” e-print arXiv:1106.5146.24.
H. M.
Srivastava
and P. G.
Todorov
, J. Math. Anal. Appl.
130
, 509
(1988
).25.
Yu. A.
Brychkov
, Integral Transforms Spec. Funct.
23
, 723
(2012
).26.
J.
Vermaseren
, Int. J. Mod. Phys. A
14
, 2037
(1999
).27.
A. P.
Prudnikov
, Yu. A.
Brychkov
, and O. I.
Marichev
, Integrals and Series
(Gordon and Breach
, New York
, 1990
), Vol 1.28.
29.
30.
31.
P.
Flajolet
and L. B.
Richmond
, Random Struct. Algorithms
3
, 305
(1992
).32.
33.
© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.