Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order α rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases, the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.

1.
W.
Heisenberg
, “
Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik
,”
Z. Phys.
43
,
172
198
(
1927
).
2.
E.
Kennard
, “
Zur Quantenmechanik einfacher Bewegungstypen
,”
Z. Phys.
44
,
326
352
(
1927
).
3.
H.
Robertson
, “
The uncertainty principle
,”
Phys. Rev.
34
,
163
164
(
1929
).
4.
H.
Weyl
,
Gruppentheorie und Quantenmechanik
(
Hirzel
,
Leipzig
,
1928
).
5.
P.
Busch
,
T.
Heinonen
, and
P.
Lahti
, “
Heisenberg's uncertainty principle
,”
Phys. Rep.
452
,
155
176
(
2007
).
6.
I. I.
Hirschman
 Jr.
, “
A note on entropy
,”
Am. J. Math.
79
,
152
156
(
1957
).
7.
M.
Ozawa
, “
Physical content of Heisenberg's uncertainty relation: Limitation and reformulation
,”
Phys. Lett. A
318
,
21
29
(
2003
).
8.
M.
Ozawa
, “
Uncertainty relations for noise and disturbance in generalized quantum measurements
,”
Ann. Phys.
311
,
350
416
(
2004
).
9.
M.
Ozawa
, “
Universal uncertainty principle in the measurement operator formalism
,”
J. Opt. B
7
,
S672
S681
(
2005
).
10.
J.
Erhart
,
S.
Sponar
,
G.
Sulyok
,
G.
Badurek
,
M.
Ozawa
, and
Y.
Hasegawa
, “
Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements
,”
Nat. Phys.
8
,
185
189
(
2012
).
11.
L.
Rozema
,
A.
Darabi
,
D.
Mahler
,
A.
Hayat
,
Y.
Soudagar
, and
A.
Steinberg
, “
Violation of Heisenberg's measurement-disturbance relationship by weak measurements
,”
Phys. Rev. Lett.
109
,
100404
(
2012
).
12.
P.
Busch
,
P.
Lahti
, and
R.
Werner
, “
Quantum root-mean-square error and measurement uncertainty relations
,” Rev. Mod. Phys. (unpublished); preprint arXiv:1312.4393 (
2013
).
13.
P.
Busch
,
P.
Lahti
, and
R.
Werner
, “
Proof of Heisenberg's error-disturbance relation
,”
Phys. Rev. Lett.
111
,
160405
(
2013
).
14.
R. F.
Werner
, “
The uncertainty relation for joint measurement of position and momentum
,”
Quantum Inf. Comput.
4
,
546
562
(
2004
).
15.
E.
Davies
,
Quantum Theory of Open Systems
(
Academic Press
,
1976
).
16.
A.
Holevo
,
Probabilistic and Statistical Aspects of Quantum Theory
(
North Holland
,
Amsterdam
,
1982
).
17.
R. F.
Werner
, “
Quantum harmonic analysis on phase space
,”
J. Math. Phys.
25
,
1404
1411
(
1984
).
18.
K.
Husimi
, “
Some formal properties of the density matrix
,”
Proc. Phys.-Math. Soc. Jpn.
22
,
264
(
1940
).
19.
G.
Cassinelli
,
E.
De Vito
, and
A.
Toigo
, “
Positive operator valued measures covariant with respect to an irreducible representation
,”
J. Math. Phys.
44
,
4768
4775
(
2003
).
20.
J.
Kiukas
,
P.
Lahti
, and
K.
Ylinen
, “
Phase space quantization and the operator moment problem
,”
J. Math. Phys.
47
,
072104
(
2006
).
21.
C.
Carmeli
,
T.
Heinonen
, and
A.
Toigo
, “
Position and momentum observables on
$\mathbb {R}$
R
and on
${\mathbb {R}}^3$
R3
,”
J. Math. Phys.
45
,
2526
2539
(
2004
).
22.
C.
Carmeli
,
T.
Heinonen
, and
A.
Toigo
, “
On the coexistence of position and momentum observables
,”
J. Phys. A
38
,
5253
5266
(
2005
).
23.
B.
Simon
, “
The classical moment problem as a self-adjoint finite difference operator
,”
Adv. Math.
137
,
82
203
(
1998
).
24.
C.
Villani
,
Optimal Transport: Old and New
(
Springer
,
2009
).
25.
T.
Champion
,
L. D.
Pascale
, and
P.
Juutinen
, “
The ∞-Wasserstein distance: Local solutions and existence of optimal transport maps
,”
SIAM J. Math. Anal.
40
,
1
20
(
2008
).
26.
P.
Jylhä
, “
The l optimal transport: Infinite cyclical monotonicity and the existence of optimal transport maps
,”
Calculus Var. Partial Differ. Equations
February,
1
24
(
2014
).
27.
H.
Wiseman
, “
Extending Heisenberg's measurement-disturbance relation to the twin-slit case
,”
Found. Phys.
28
,
1619
1631
(
1998
).
28.
E. A.
Carlen
and
W.
Gangbo
, “
Constrained steepest descent in the 2-Wasserstein metric
,”
Ann. Math. (2)
157
,
807
846
(
2003
).
29.
J.
Kiukas
and
P.
Lahti
, “
A note on the measurement of phase space observables with an eight-port homodyne detector
,”
J. Mod. Opt.
55
,
1891
1898
(
2008
).
30.
P.
Busch
and
D. B.
Pearson
, “
Universal joint-measurement uncertainty relation for error bars
,”
J. Math. Phys.
48
,
082103
(
2007
).
31.
M. G.
Cowling
and
J. F.
Price
, “
Bandwidth versus time concentration: The Heisenberg-Pauli-Weyl inequality
,”
SIAM J. Math. Anal.
15
,
151
165
(
1984
).
32.
G. B.
Folland
and
A.
Sitaram
, “
The uncertainty principle: A mathematical survey
,”
J. Fourier Anal. Appl.
3
,
207
238
(
1997
).
33.
B.
Simon
,
Trace Ideals and Their Applications
,
London Mathematical Society Lecture Note Series
Vol.
35
(
Cambridge University Press
,
Cambridge
,
1979
), pp.
viii+134
.
34.
E. B.
Davies
,
One-Parameter Semigroups
,
London Mathematical Society Monographs
Vol.
15
(
Academic Press Inc. [Harcourt Brace Jovanovich Publishers]
,
London
,
1980
), pp.
viii+230
.
35.
M.
Keyl
,
D.
Schlingemann
, and
R. F.
Werner
, “
Infinitely entangled states
,”
Quantum Inf. Comput.
3
,
281
306
(
2003
).
36.
N.
Dunford
and
J. T.
Schwartz
,
Linear Operators. Part I
,
Wiley Classics Library
(
John Wiley & Sons Inc.
,
New York
,
1988
), pp.
xiv+858
[General Theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication].
37.
N.
Bourbaki
,
General Topology, Part I
(
Herrmann
,
Paris
,
1966
).
38.
W.
Beckner
, “
Inequalities in Fourier analysis
,”
Ann. Math. (2)
102
,
159
182
(
1975
).
39.
E.
Schrödinger
, “
Zum Heisenbergschen Unschärfeprinzip
,”
Berliner Berichte
19
,
296
303
(
1930
).
40.
J.
Schultz
,
J.
Kiukas
, and
R. F.
Werner
, “
Quantum harmonic analysis on locally compact Abelian groups
,” (unpublished).
41.
O.
Sachse
, “
Unschärferelation für diskrete Observable
,” B.Sc. thesis, Hannover,
2013
.
42.
C.
Carmeli
,
T.
Heinosaari
, and
A.
Toigo
, “
Sequential measurements of conjugate observables
,”
J. Phys. A
44
,
285304
(
2011
).
43.
F.
Buscemi
,
M. J. W.
Hall
,
M.
Ozawa
, and
M. M.
Wilde
, “
Noise and disturbance in quantum measurements: An information-theoretic approach
,”
Phys. Rev. Lett.
112
,
050401
(
2014
).
44.
P.
Coles
and
F.
Furrer
, “
Entropic formulation of Heisenberg's error-disturbance relation
,” preprint arXiv:1311.7637 (
2013
).
45.
P.
Busch
,
P.
Lahti
, and
R.
Werner
, “
Heisenberg uncertainty for qubit measurements
,”
Phys. Rev. A
89
,
012129
(
2014
).
46.
D.
Reeb
, private communication, IMS Singapore (Summer 2013).
47.
D. M.
Appleby
, “
Error principle
,”
Int. J. Mod. Theor. Phys.
37
,
2557
2572
(
1998
).
48.
H.
Maassen
and
J. B. M.
Uffink
, “
Generalized entropic uncertainty relations
,”
Phys. Rev. Lett.
60
,
1103
1106
(
1988
).
You do not currently have access to this content.