Partial differential equations of the form

$\mathop {\hbox{\rm div}}{{\bm N}} =0$
divN=0⁠,
${{\bm N}}_t + \mathop {\hbox{\rm curl}}{{\bm M}}=0$
Nt+curlM=0
involving two vector functions in
$\mathbb {R}^3$
R3
depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in
$\mathbb {R}^4(t,x,y,z)$
R4(t,x,y,z)
. The corresponding potential system has a clear physical meaning. For the Maxwell's equations, it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.

1.
S.
Anco
and
G.
Bluman
, “
Direct construction method for conservation laws of partial differential equations. Part I: Examples of conservation law classifications
,”
Eur. J. Appl. Math.
13
,
545
566
(
2002
).
2.
S.
Anco
and
G.
Bluman
, “
Direct construction method for conservation laws of partial differential equations. Part II: General treatment
,”
Eur. J. Appl. Math
13
,
567
585
(
2002
).
3.
S. C.
Anco
and
G.
Bluman
, “
Direct construction of conservation laws from field equations
,”
Phys. Rev. Lett.
78
(
15
),
2869
2873
(
1997
).
4.
S. C.
Anco
and
G.
Bluman
, “
Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations
,”
J. Math. Phys.
38
,
3508
(
1997
).
5.
S. C.
Anco
and
J.
Pohjanpelto
, “
Classification of local conservation laws of Maxwell's equations
,”
Acta Appl. Math.
69
(
3
),
285
327
(
2001
).
6.
S. C.
Anco
and
D.
The
, “
Symmetries, conservation laws, and cohomology of Maxwell's equations using potentials
,”
Acta Appl. Math.
89
(
1–3
),
1
52
(
2005
).
7.
I. M.
Anderson
and
C. G.
Torre
, “
Asymptotic conservation laws in classical field theory
,”
Phys. Rev. Lett.
77
(
20
),
4109
4113
(
1996
).
8.
T.
Benjamin
, “
The stability of solitary waves
,”
Proc. R. Soc. London A
328
(
1573
),
153
183
(
1972
).
9.
G.
Bluman
,
A.
Cheviakov
, and
S.
Anco
,
Applications of Symmetry Methods to Partial Differential Equations
,
Applied Mathematical Sciences
Vol.
168
(
Springer
,
2010
).
10.
G.
Bluman
and
A. F.
Cheviakov
, “
Framework for potential systems and nonlocal symmetries: Algorithmic approach
,”
J. Math. Phys.
46
,
123506
(
2005
).
11.
G.
Bluman
,
A. F.
Cheviakov
, and
N. M.
Ivanova
, “
Framework for nonlocally related partial differential equation systems and nonlocal symmetries: Extension, simplification, and examples
,”
J. Math. Phys.
47
,
113505
(
2006
).
12.
O. I.
Bogoyavlenskij
, “
Astrophysical jets as exact plasma equilibria
,”
Phys. Rev. Lett.
84
(
9
),
1914
1917
(
2000
).
13.
O. I.
Bogoyavlenskij
, “
Helically symmetric astrophysical jets
,”
Phys. Rev. E
62
(
6
),
8616
(
2000
).
14.
O. I.
Bogoyavlenskij
, “
Infinite symmetries of the ideal MHD equilibrium equations
,”
Phys. Lett. A
291
(
4
),
256
264
(
2001
).
15.
A.
Cheviakov
, “
GeM software package for computation of symmetries and conservation laws of differential equations
,”
Comput. Phys. Commun.
176
(
1
),
48
61
(
2007
).
16.
A.
Cheviakov
, “
Computation of fluxes of conservation laws
,”
J. Eng. Math.
66
,
153
173
(
2010
).
17.
A. F.
Cheviakov
, “
Bogoyavlenskij symmetries of ideal MHD equilibria as Lie point transformations
,”
Phys. Lett. A
321
(
1
),
34
49
(
2004
).
18.
A. F.
Cheviakov
, “
Construction of exact plasma equilibrium solutions with different geometries
,”
Phys. Rev. Lett.
94
(
16
),
165001
(
2005
).
19.
A. F.
Cheviakov
and
G. W.
Bluman
, “
Multidimensional partial differential equation systems: Generating new systems via conservation laws, potentials, gauges, subsystems
,”
J. Math. Phys.
51
,
103521
(
2010
).
20.
A. F.
Cheviakov
and
G. W.
Bluman
, “
Multidimensional partial differential equation systems: Nonlocal symmetries, nonlocal conservation laws, exact solutions
,”
J. Math. Phys.
51
,
103522
(
2010
).
21.
A. F.
Cheviakov
and
O. I.
Bogoyavlenskij
, “
Exact anisotropic MHD equilibria
,”
J. Phys. A
37
(
30
),
7593
(
2004
).
22.
F.
Galas
, “
Generalized symmetries for the ideal MHD equations
,”
Physica D
63
(
1
),
87
98
(
1993
).
23.
R.
Knops
and
C.
Stuart
, “
Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity
,”
Arch. Rat. Mech. Anal.
86
(
3
),
233
249
(
1984
).
24.
M.
Kunzinger
and
R. O.
Popovych
, “
Potential conservation laws
,”
J. Math. Phys.
49
(
10
),
103506
(
2008
).
25.
P.
Lax
, “
Integrals of nonlinear equations of evolution and solitary waves
,”
Commun. Pure Appl. Math.
21
(
5
),
467
490
(
1968
).
26.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
(
Springer Verlag
,
2000
), Vol.
107
.
You do not currently have access to this content.