We provide a characterization of all Hamiltonian systems of the form where V is a homogenous polynomial of degree 3 which are completely integrable with Darboux first integrals.
REFERENCES
1.
T.
Boundis
, H.
Segur
, and F.
Vivaldi
, “Integrable Hamiltonian systems and the Painlevé property
,” Phys. Rev. A
25
, 1257
–1264
(1982
).2.
Y. F.
Chang
, M.
Tabor
, and J.
Weiss
, “Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes
,” J. Math. Phys.
23
, 531
–538
(1982
).3.
C.
Christopher
, J.
Llibre
, and J. V.
Pereira
, “Multiplicity of invariant algebraic curves in polynomial vector fields
,” Pacific J. Math.
229
, 63
–117
(2007
).4.
G.
Darboux
, “Mémoire sur les équations différentielles du premier ordre et du premier degreé (Mélanges)
,” Bull. Sci. Math. 2éme Série
2
, 60
–96
, 123–144, 151–200 (1878
).5.
G.
Darboux
, “De l'emploi des solutions particulières algébriques dans l'intégration des systèmes d'équations différentielles algébriques
,” C. R. Math. Acad. Sci. Paris
86
, 1012
–1014
(1878
).6.
F.
Dumortier
, J.
Llibre
, and J. C.
Artés
, Qualitative Theory of Planar Differential Systems
, Universitext (Springer-Verlag
, Berlin
, 2006
).7.
S. D.
Furta
, “On non-integrability of general systems of differential equations
,” Z. Angew Math. Phys.
47
, 112
–131
(1996
).8.
F.
Gonzalez–Gascon
, “A word of caution concerning the Yoshida criterion on algebraic integrability and Kowalevski exponents
,” Celestial Mech.
44
, 309
–311
(1988
).9.
A.
Goriely
, “Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations
,” J. Math. Phys.
37
, 1871
–1893
(1996
).10.
B.
Grammaticos
, B.
Dorizzi
, and R.
Padjen
, “Painlevé property and integrals of motion for the Hénon-Heiles system
,” Phys. Lett. A
89
, 111
–113
(1982
).11.
L. S.
Hall
, “A theory of exact and approximate configurational invariants
,” Phys. D
8
, 90
–116
(1983
).12.
J.
Hietarinta
, “A search for integrable two dimensional Hamiltonian systems with polynomial potential
,” Phys. Lett. A
96
, 273
–278
(1983
).13.
J.
Hietarinta
, “Direct methods for the search of the second invariant
,” Phys. Rep.
147
, 87
–154
(1987
).14.
J.
Llibre
and X.
Zhang
, “Polynomial first integrals for quasi-homogeneous polynomial differential systems
,” Nonlinearity
15
, 1269
–1280
(2002
).15.
J.
Llibre
and X.
Zhang
, “Darboux theory of integrability for polynomial vector fields in taking into account their multiplicity at infinity
,” Bull. Sci. Math.
133
, 765
–778
(2009
).16.
A. J.
Maciejewski
and M.
Przybylska
, “All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3
,” Phys. Lett. A
327
(5–6
), 461
–473
(2004
).17.
A. J.
Maciejewski
and M.
Przybylska
, “Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential
,” J. Math. Phys.
46
(6
), 062901
(2005
).18.
J. J. Morales
Ruiz
, Differential Galois Theory and Non-Integrability of Hamiltonian Systems
, Progress in Mathematics
Vol. 179
(Birkhäuser Verlag
, Basel
, 1999
).19.
A.
Ramani
, B.
Dorizzi
, and B.
Grammaticos
, “Painlevé conjecture revisited
,” Phys. Rev. Lett.
49
, 1539
–1541
(1982
).20.
A.
Tsygvintsev
, “On the existence of polynomial first integrals of quadratic homogeneous systems of ordinary differential equations
,” J. Phys. A: Math. Gen.
34
, 2185
–2193
(2001
).21.
H.
Yoshida
, “Necessary conditions for existence of algebraic first integrals I and II
,” Celestial Mech.
31
, 363
–379
, 381–399 (1983
).22.
H.
Yoshida
, “A note on Kowalevski exponents and the non–existence of an additional analytic integral
,” Celestial Mech.
44
, 313
–316
(1988
).23.
H.
Yoshida
, “A criterion for the non-existence of an additional analytic integral in Hamiltonian systems with n degrees of freedom
,” Phys. Lett. A
141
, 108
–112
(1989
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.