We provide a characterization of all Hamiltonian systems of the form H=(p12+p22)/2+V(q1,q2), where V is a homogenous polynomial of degree 3 which are completely integrable with Darboux first integrals.

1.
T.
Boundis
,
H.
Segur
, and
F.
Vivaldi
, “
Integrable Hamiltonian systems and the Painlevé property
,”
Phys. Rev. A
25
,
1257
1264
(
1982
).
2.
Y. F.
Chang
,
M.
Tabor
, and
J.
Weiss
, “
Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes
,”
J. Math. Phys.
23
,
531
538
(
1982
).
3.
C.
Christopher
,
J.
Llibre
, and
J. V.
Pereira
, “
Multiplicity of invariant algebraic curves in polynomial vector fields
,”
Pacific J. Math.
229
,
63
117
(
2007
).
4.
G.
Darboux
, “
Mémoire sur les équations différentielles du premier ordre et du premier degreé (Mélanges)
,”
Bull. Sci. Math. 2éme Série
2
,
60
96
, 123–144, 151–200 (
1878
).
5.
G.
Darboux
, “
De l'emploi des solutions particulières algébriques dans l'intégration des systèmes d'équations différentielles algébriques
,”
C. R. Math. Acad. Sci. Paris
86
,
1012
1014
(
1878
).
6.
F.
Dumortier
,
J.
Llibre
, and
J. C.
Artés
,
Qualitative Theory of Planar Differential Systems
, Universitext (
Springer-Verlag
,
Berlin
,
2006
).
7.
S. D.
Furta
, “
On non-integrability of general systems of differential equations
,”
Z. Angew Math. Phys.
47
,
112
131
(
1996
).
8.
F.
Gonzalez–Gascon
, “
A word of caution concerning the Yoshida criterion on algebraic integrability and Kowalevski exponents
,”
Celestial Mech.
44
,
309
311
(
1988
).
9.
A.
Goriely
, “
Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations
,”
J. Math. Phys.
37
,
1871
1893
(
1996
).
10.
B.
Grammaticos
,
B.
Dorizzi
, and
R.
Padjen
, “
Painlevé property and integrals of motion for the Hénon-Heiles system
,”
Phys. Lett. A
89
,
111
113
(
1982
).
11.
L. S.
Hall
, “
A theory of exact and approximate configurational invariants
,”
Phys. D
8
,
90
116
(
1983
).
12.
J.
Hietarinta
, “
A search for integrable two dimensional Hamiltonian systems with polynomial potential
,”
Phys. Lett. A
96
,
273
278
(
1983
).
13.
J.
Hietarinta
, “
Direct methods for the search of the second invariant
,”
Phys. Rep.
147
,
87
154
(
1987
).
14.
J.
Llibre
and
X.
Zhang
, “
Polynomial first integrals for quasi-homogeneous polynomial differential systems
,”
Nonlinearity
15
,
1269
1280
(
2002
).
15.
J.
Llibre
and
X.
Zhang
, “
Darboux theory of integrability for polynomial vector fields in Rn taking into account their multiplicity at infinity
,”
Bull. Sci. Math.
133
,
765
778
(
2009
).
16.
A. J.
Maciejewski
and
M.
Przybylska
, “
All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3
,”
Phys. Lett. A
327
(
5–6
),
461
473
(
2004
).
17.
A. J.
Maciejewski
and
M.
Przybylska
, “
Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential
,”
J. Math. Phys.
46
(
6
),
062901
(
2005
).
18.
J. J. Morales
Ruiz
,
Differential Galois Theory and Non-Integrability of Hamiltonian Systems
,
Progress in Mathematics
Vol.
179
(
Birkhäuser Verlag
,
Basel
,
1999
).
19.
A.
Ramani
,
B.
Dorizzi
, and
B.
Grammaticos
, “
Painlevé conjecture revisited
,”
Phys. Rev. Lett.
49
,
1539
1541
(
1982
).
20.
A.
Tsygvintsev
, “
On the existence of polynomial first integrals of quadratic homogeneous systems of ordinary differential equations
,”
J. Phys. A: Math. Gen.
34
,
2185
2193
(
2001
).
21.
H.
Yoshida
, “
Necessary conditions for existence of algebraic first integrals I and II
,”
Celestial Mech.
31
,
363
379
, 381–399 (
1983
).
22.
H.
Yoshida
, “
A note on Kowalevski exponents and the non–existence of an additional analytic integral
,”
Celestial Mech.
44
,
313
316
(
1988
).
23.
H.
Yoshida
, “
A criterion for the non-existence of an additional analytic integral in Hamiltonian systems with n degrees of freedom
,”
Phys. Lett. A
141
,
108
112
(
1989
).
You do not currently have access to this content.