We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a d-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only O(d2) interactive observables, as opposed to the O(d4) required for tomography of arbitrary channels. This result generalizes to the problem of identifying channels with at most q Kraus operators, and slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with q Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.

1.
J.
Chen
,
H.
Dawkins
,
Z.
Ji
,
N.
Johnston
,
D. W.
Kribs
,
F.
Shultz
, and
B.
Zeng
, “
Uniqueness of quantum states compatible with given measurement results
,”
Phys. Rev. A
88
,
012109
(
2013
); e-print arXiv:1212.3503 [quant-ph].
2.
G.
Chiribella
,
G. M.
D'Ariano
, and
P.
Perinotti
, “
Quantum circuits architecture
,”
Phys. Rev. Lett.
101
,
060401
(
2008
); e-print arXiv:0712.1325 [quant-ph].
3.
G.
Chiribella
,
G. M.
D'Ariano
, and
P.
Perinotti
, “
Theoretical framework for quantum networks
,”
Phys. Rev. A
80
(
2
),
022339
(
2009
); e-print arXiv:0904.4483 [quant-ph].
4.
C.
Carmeli
,
T.
Heinosaari
,
J.
Schultz
, and
A.
Toigo
, “
Tasks and premises in quantum state determination
,”
J. Phys. A: Math. Theor.
47
,
075302
(
2014
); e-print arXiv:1308.5502 [quant-ph] (2013).
5.
T. S.
Cubitt
,
A.
Montanaro
, and
A.
Winter
, “
On the dimension of subspaces with bounded Schmidt rank
,”
J. Math. Phys.
49
,
022107
(
2008
); e-print arXiv:0706.0705 [quant-ph].
6.
S. M.
Fallat
, “
Bidiagonal factorizations of totally nonnegative matrices
,”
Am. Math. Mon.
108
,
697
712
(
2001
).
7.
G.
Gutoski
, “
On a measure of distance for quantum strategies
,”
J. Math. Phys.
53
(
3
),
032202
(
2012
); e-print arXiv:1008.4636 [quant-ph].
8.
G.
Gutoski
and
J.
Watrous
, “
Toward a general theory of quantum games
,” in
Proceedings of the 39th ACM Symposium on Theory of Computing (STOC 2007)
(
ACM
,
2007
), pp.
565
574
; e-print arXiv:quant-ph/0611234.
9.
T.
Heinosaari
,
L.
Mazzarella
, and
M. M.
Wolf
, “
Quantum tomography under prior information
,”
Commun. Math. Phys.
318
,
355
374
(
2013
); e-print arXiv:1109.5478 [quant-ph].
10.
N.
Johnston
and
D. W.
Kribs
, “
Duality of entanglement norms
,” Houston J. Math. (to be published); e-print arXiv:1304.2328 [quant-ph].
11.
R.
Jain
,
S.
Upadhyay
, and
J.
Watrous
, “
Two-message quantum interactive proofs are in PSPACE
,” in
Proceedings of the 50th IEEE Symposium on Foundations of Computer Science (FOCS 2009)
(
IEEE
,
2009
), pp.
534
543
; e-print arXiv:0905.1300 [quant-ph].
12.
S.
Kimmel
,
M.
da Silva
,
C.
Ryan
,
B.
Johnson
, and
T.
Ohki
, “
Robust extraction of tomographic information via randomized benchmarking
,” preprint arXiv:1306.2348 [quant-ph] (
2013
).
13.
A.
Shabani
,
R. L.
Kosut
,
M.
Mohseni
,
H.
Rabitz
,
M. A.
Broome
,
M. P.
Almeida
,
A.
Fedrizzi
, and
A. G.
White
, “
Efficient measurement of quantum dynamics via compressive sensing
,”
Phys. Rev. Lett.
106
,
100401
(
2011
); e-print arXiv:0910.5498 [quant-ph].
14.
M.
Ziman
, “
Process positive-operator-valued measure: A mathematical framework for the description of process tomography experiments
,”
Phys. Rev. A
77
(
6
),
062112
(
2008
); e-print arXiv:0802.3862 [quant-ph].
You do not currently have access to this content.