We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion.

1.
E.
Barkai
and
V. N.
Fleurov
, “
Generalized Einstein relation: A stochastic modeling approach
,”
Phys. Rev. E
58
,
1296
(
1998
).
2.
E.
Barkai
, “
Aging in subdiffusion generated by a deterministic dynamical system
,”
Phys. Rev. Lett.
90
,
104101
(
2003
).
3.
E.
Barkai
,
Y.
Garini
, and
R.
Metzler
, “
Strange kinetics of single molecules in living cells
,”
Phys. Today
65
(
8
),
29
(
2012
).
4.
S.
Burov
and
E.
Barkai
, “
Fractional Langevin equation: Overdamped, underdamped, and critical behaviors
,”
Phys. Rev. E
78
,
031112
(
2008
);
S.
Burov
and
E.
Barkai
, “
Critical exponent of the fractional Langevin equation
,”
Phys. Rev. Lett.
100
,
070601
(
2008
).
[PubMed]
5.
S.
Burov
,
J.-H.
Jeon
,
R.
Metzler
, and
E.
Barkai
, “
Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking
,”
Phys. Chem. Chem. Phys.
13
,
1800
(
2011
).
6.
R. F.
Camargo
,
A. O.
Chiacchio
,
R.
Charnet
, and
E.
Capelas de Oliveira
, “
Solution of the fractional Langevin equation and the Mittag-Leffler functions
,”
J. Math. Phys.
50
,
063507
(
2009
);
R. F.
Camargo
,
E.
Capelas de Oliveira
, and
J.
Vaz
 Jr.
, “
On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator
,”
J. Math. Phys.
50
,
123518
(
2009
).
7.
E.
Capelas de Oliveira
,
F.
Mainardi
, and
J.
Vaz
 Jr.
, “
Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics
,”
Eur. Phys. J.: Spec. Top.
193
,
161
(
2011
).
8.
M.
Caputo
,
Elasticita Dissipacione
(
Zanichelli
,
Bologna
,
1969
).
9.
S.
Chaudhury
and
B. J.
Cherayil
, “
Dynamic disorder in single-molecule Michaelis-Menten kinetics: The reaction-diffusion formalism in the Wilemski-Fixman approximation
,”
J. Chem. Phys.
127
,
105103
(
2007
);
[PubMed]
S.
Chaudhury
and
B. J.
Cherayil
, “
Complex chemical kinetics in single enzyme molecules: Kramers's model with fractional Gaussian noise
,”
J. Chem. Phys.
125
,
024904
(
2006
);
S.
Chaudhury
and
B. J.
Cherayil
, “
Approximate first passage time distribution for barrier crossing in a double well under fractional Gaussian noise
,”
J. Chem. Phys.
125
,
114106
(
2006
);
[PubMed]
S.
Chaudhury
and
B. J.
Cherayil
, “
Structural relaxation in complex liquids: Non-Markovian dynamics in a bistable potential
,”
J. Chem. Phys.
125
,
184505
(
2006
);
[PubMed]
D.
Chatterjee
and
B. J.
Cherayil
, “
Anomalous reaction-diffusion as a model of nonexponential DNA escape kinetics
,”
J. Chem. Phys.
132
,
025103
(
2010
).
[PubMed]
10.
A. G.
Cherstvy
,
A. V.
Chechkin
, and
R.
Metzler
,
New J. Phys.
15
,
083039
(
2013
).
11.
W.
Deng
and
E.
Barkai
, “
Ergodic properties of fractional Brownian-Langevin motion
,”
Phys. Rev. E
79
,
011112
(
2009
).
12.
S. I.
Denisov
,
S. B.
Yuste
,
Y. S.
Bystrik
,
H.
Kantz
, and
K.
Lindenberg
, “
Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions
,”
Phys. Rev. E
84
,
061143
(
2011
).
13.
M. A.
Despósito
and
A. D.
Viñales
, “
Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation
,”
Phys. Rev. E
77
,
031123
(
2008
);
M. A.
Despósito
and
A. D.
Viñales
, “
Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function
,”
Phys. Rev. E
80
,
021111
(
2009
).
14.
C. H.
Eab
and
S. C.
Lim
, “
Fractional generalized Langevin equation approach to single-file diffusion
,”
Physica A
389
,
2510
(
2010
).
15.
C. H.
Eab
and
S. C.
Lim
, “
Fractional Langevin equation of distributed order
,”
Phys. Rev. E
83
,
031136
(
2011
).
16.
C. H.
Eab
and
S. C.
Lim
, “
Accelerating and retarding anomalous diffusion
,”
J. Phys. A: Math. Theor.
45
,
145001
(
2012
).
17.
K. S.
Fa
, “
Generalized Langevin equation with fractional derivative and long-time correlation function
,”
Phys. Rev. E
73
,
061104
(
2006
);
K. S.
Fa
, “
Analysis of a generalized Langevin equation with fractional derivative, nonlocal force and linear external force
,”
Fluctuation Noise Lett.
8
,
L381
(
2008
).
18.
D.
Froemberg
and
E.
Barkai
, “
Time averaged Einstein relation and fluctuating diffusivities for the Lévy walk
,”
Phys. Rev. E
87
,
030104
R
(
2013
).
19.
A.
Godec
and
R.
Metzler
, “
Finite-time effects and ultraweak ergodicity breaking in superdiffusive dynamics
,”
Phys. Rev. Lett.
110
,
020603
(
2013
).
20.
I.
Golding
and
E. C.
Cox
, “
Physical nature of bacterial cytoplasm
,”
Phys. Rev. Lett.
96
,
098102
(
2006
).
21.
R.
Gorenflo
and
F.
Mainardi
, “
Simply and multiply scaled diffusion limits for continuous time random walks
,”
J. Phys.: Conf. Ser.
7
,
1
(
2005
).
22.
I.
Goychuk
and
P.
Hänggi
, “
Anomalous escape governed by thermal 1/f noise
,”
Phys. Rev. Lett.
99
,
200601
(
2007
);
[PubMed]
I.
Goychuk
, “
Viscoelastic subdiffusion: From anomalous to normal
,”
Phys. Rev. E
80
,
046125
(
2009
).
23.
J. W.
Hanneken
,
B. N.
Narahari Achar
,
R.
Puzio
, and
D. M.
Vaught
, “
Properties of the Mittag-Leffler function for negative alpha
,”
Phys. Scr.
T136
,
014037
(
2009
).
24.
H. J.
Haubold
,
A. M.
Mathai
, and
R. K.
Saxena
, “
Mittag-Leffler functions and their applications
,”
J. Appl. Math.
2011
,
298628
(
2011
).
25.
Y.
He
,
S.
Burov
,
R.
Metzler
, and
E.
Barkai
, “
Random time-scale invariant diffusion and transport coefficients
,”
Phys. Rev. Lett.
101
,
058101
(
2008
).
26.
R.
Hilfer
,
Applications of Fractional Calculus in Physics
(
World Scientific Publishing Company
,
Singapore
,
2000
).
27.
R.
Hilfer
, “
On fractional diffusion and continuous time random walks
,”
Physica A
329
,
35
(
2003
).
28.
J.-H.
Jeon
,
V.
Tejedor
,
S.
Burov
,
E.
Barkai
,
C.
Selhuber-Unkel
,
K.
Berg-Sørensen
,
L.
Oddershede
, and
R.
Metzler
, “
In vivo anomalous diffusion and weak ergodicity breaking of lipid granules
,”
Phys. Rev. Lett.
106
,
048103
(
2011
).
29.
J.-H.
Jeon
, and
R.
Metzler
, “
Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries
,”
Phys. Rev. E
81
,
021103
(
2010
);
J.-H.
Jeon
, and
R.
Metzler
, “
Inequivalence of time and ensemble averages in ergodic systems: Exponential versus power-law relaxation in confinement
,”
Phys. Rev. Lett.
85
,
021147
(
2012
).
30.
A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
,
Theory And Applications of Fractional Differential Equations
(
North-Holland Mathematical Studies
,
Amsterdam
,
2006
).
31.
V.
Kobelev
and
E.
Romanov
,
Prog. Theor. Phys. Suppl.
139
,
470
(
2000
).
32.
A. N.
Kolmogorov
, “
Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum
,”
Dokl. Acad. Sci. USSR
26
,
115
(
1940
).
33.
S. C.
Kou
and
X. S.
Xie
, “
Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule
,”
Phys. Rev. Lett.
93
,
180603
(
2004
).
34.
R.
Kubo
, “
The fluctuation-dissipation theorem
,”
Rep. Prog. Phys.
29
,
255
(
1966
).
35.
P.
Langevin
, “
Sur la théorie du mouvement brownien
,”
C. R. Acad. Sci.
146
,
530
(
1908
).
36.
E. K.
Lenzi
,
L. C.
Malacarne
,
R. S.
Mendes
, and
I. T.
Pedron
, “
Anomalous diffusion, nonlinear fractional Fokker-Planck equation and solutions
,”
Physica A
319
,
245
(
2003
);
E. K.
Lenzi
,
R. S.
Mendes
,
K. S.
Fa
,
L. C.
Malacarne
, and
L. R.
da Silva
, “
Anomalous diffusion: Fractional Fokker-Planck equation and its solutions
,”
J. Math. Phys.
44
,
2179
(
2003
).
37.
S. C.
Lim
and
L. P.
Teo
, “
Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation
,”
J. Stat. Mech.: Theory Exp.
(
2009
),
P08015
.
38.
G.
Luo
,
I.
Andricioaei
,
X. S.
Xie
, and
M.
Karplus
, “
Dynamic distance disorder in proteins is caused by trapping
,”
J. Phys. Chem. B
110
,
9363
(
2006
).
39.
E.
Lutz
, “
Fractional Langevin equation
,”
Phys. Rev. E
64
,
051106
(
2001
).
40.
F.
Mainardi
and
P.
Pironi
, “
The fractional Langevin equation: Brownian motion revisited
,”
Extr. Math.
10
,
140
(
1996
).
41.
B. B.
Mandelbrot
and
J. W.
van Ness
, “
Fractional Brownian motions, fractional noises and applications
,”
SIAM Rev.
10
,
422
(
1968
).
42.
R.
Metzler
, “
Generalized Chapman-Kolmogorov equation: A unifying approach to the description of anomalous transport in external fields
,”
Phys. Rev. E
62
,
6233
(
2000
).
43.
R.
Metzler
,
E.
Barkai
, and
J.
Klafter
, “
Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach
,”
Phys. Rev. Lett.
82
,
3563
(
1999
).
44.
R.
Metzler
and
J.
Klafter
, “
The random walk's guide to anomalous diffusion: a fractional dynamics approach
,”
Phys. Rep.
339
,
1
(
2000
);
R.
Metzler
and
J.
Klafter
, “
The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
,”
J. Phys. A: Math. Gen.
37
,
R161
(
2004
).
45.
W.
Min
,
G.
Luo
,
B. J.
Cherayil
,
S. C.
Kou
, and
X. S.
Xie
, “
Observation of a power-law memory kernel for fluctuations within a single protein molecule
,”
Phys. Rev. Lett.
94
,
198302
(
2005
).
46.
C.
Monthus
and
J.-P.
Bouchaud
, “
Models of traps and glass phenomenology
,”
J. Phys. A: Math. Gen.
29
,
3847
(
1996
).
47.
J.
Paneva-Konovska
, “
Convergence of series in three parametric Mittag-Leffler functions
,”
Math. Slovaca
(to be published);
J.
Paneva-Konovska
, “
Inequalities and asymptotic formulae for the three parametric Mittag-Leffler functions
,”
Math. Balkanica
26
,
203
(
2012
);
J.
Paneva-Konovska
, “
On the multi-index (3m-parametric) Mittag-Leffler functions, fractional calculus relations and series convergence
,”
Cent. Eur. J. Phys.
11
,
1164
(
2013
).
48.
N.
Pottier
, “
Aging properties of an anomalously diffusing particule
,”
Physica A
317
,
371
(
2003
);
N.
Pottier
and
A.
Mauger
, “
Anomalous diffusion of a particle in an aging medium
,”
Physica A
282
,
77
(
2000
).
49.
T. R.
Prabhakar
, “
A singular integral equation with a generalized Mittag-Leffler function in the kernel
,”
Yokohama Math. J.
19
,
7
(
1971
).
50.
T.
Sandev
,
R.
Metzler
, and
Ž.
Tomovski
, “
Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative
,”
J. Phys. A: Math. Theor.
44
,
255203
(
2011
);
Ž.
Tomovski
,
T.
Sandev
,
R.
Metzler
, and
J.
Dubbeldam
, “
Generalized space-time fractional diffusion equation with composite fractional time derivative
,”
Physica A
391
,
2527
(
2012
).
51.
T.
Sandev
,
R.
Metzler
, and
Ž.
Tomovski
, “
Velocity and displacement correlation functions for fractional generalized Langevin equations
,”
Fract. Calc. Appl. Anal.
15
,
426
(
2012
).
52.
T.
Sandev
and
Ž.
Tomovski
, “
Asymptotic behavior of a harmonic oscillator driven by a generalized Mittag-Leffler noise
,”
Phys. Scr.
82
,
065001
(
2010
).
53.
T.
Sandev
and
Ž.
Tomovski
, “
Langevin equation for a free particle driven by power law type of noises
,”
Phys. Lett. A
378
,
1
(
2014
).
54.
T.
Sandev
,
Ž.
Tomovski
, and
J. L. A.
Dubbeldam
, “
Generalized Langevin equation with a three parameter Mittag-Leffler noise
,”
Physica A
390
,
3627
(
2011
).
55.
R. K.
Saxena
,
A. M.
Mathai
, and
H. J.
Haubold
, “
Unified fractional kinetic equation and a fractional diffusion equation
,”
Astrophys. Space Sci.
290
,
299
(
2004
).
56.
H.
Scher
and
E. W.
Montroll
, “
Anomalous transit-time dispersion in amorphous solids
,”
Phys. Rev. B
12
,
2455
(
1975
).
57.
H.
Scher
,
G.
Margolin
,
R.
Metzler
,
J.
Klafter
, and
B.
Berkowitz
, “
The dynamical foundation of fractal stream chemistry: The origin of extremely long retention times
,”
Geophys. Res. Lett.
29
,
1061
, doi: (
2002
).
58.
J.
Schulz
,
E.
Barkai
, and
R.
Metzler
, “
Aging effects and population splitting in single-particle trajectory averages
,”
Phys. Rev. Lett.
110
,
020602
(
2013
).
59.
A. L.
Soubhia
,
R. F.
Camargo
,
E.
Capelas de Oliveira
, and
J.
Vaz
 Jr.
, “
Theorem for series in three-parameter Mittag-Leffler function
,”
Fract. Calc. Appl. Anal.
13
,
9
(
2010
).
60.
H. M.
Srivastava
and
Ž.
Tomovski
, “
Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
,”
Appl. Math. Comput.
211
,
198
(
2009
).
61.
J.
Tang
and
R. A.
Marcus
, “
Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles
,”
Phys. Rev. Lett.
95
,
107401
(
2005
).
62.
Ž.
Tomovski
,
R.
Hilfer
, and
H. M.
Srivastava
, “
Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions
,”
Integr. Transform. Spec. Funct.
21
,
797
(
2010
).
63.
C.
Tsallis
and
E. K.
Lenzi
, “
Anomalous diffusion: nonlinear fractional Fokker-Planck equation
,”
Chem. Phys.
284
,
341
(
2002
).
64.
A. D.
Viñales
and
M. A.
Despósito
, “
Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle
,”
Phys. Rev. E
73
,
016111
(
2006
).
65.
A. D.
Viñales
and
M. A.
Despósito
, “
Anomalous diffusion induced by a Mittag-Leffler correlated noise
,”
Phys. Rev. E
75
,
042102
(
2007
);
A. D.
Viñales
,
K. G.
Wang
, and
M. A.
Despósito
, “
Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise
,”
Phys. Rev. E
80
,
011101
(
2009
).
66.
K. G.
Wang
, “
Long-time-correlation effects and biased anomalous diffusion
,”
Phys. Rev. A
45
,
833
(
1992
);
[PubMed]
K. G.
Wang
and
M.
Tokuyama
, “
Nonequilibrium statistical description of anomalous diffusion
,”
Physica A
265
,
341
(
1999
).
67.
S. C.
Weber
,
A. J.
Spakowitz
, and
J. A.
Theriot
, “
Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm
,”
Phys. Rev. Lett.
104
,
238102
(
2010
).
68.
B. J.
West
, “
Fractal physiology and the fractional calculus: a perspective
,”
Front. Physiol.
1
,
12
(
2010
).
69.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
New York
,
2001
).
You do not currently have access to this content.