We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold, which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.

1.
Absil
,
P.-A.
,
Mahony
,
R.
, and
Sepulchre
,
R.
,
Optimization Algorithms on Matrix Manifolds
(
Princeton University Press
,
2009
).
2.
Affleck
,
I.
,
Kennedy
,
T.
,
Lieb
,
E. H.
, and
Tasaki
,
H.
,
Phys. Rev. Lett.
59
,
799
(
1987
).
3.
Affleck
,
I.
,
Kennedy
,
T.
,
Lieb
,
E. H.
, and
Tasaki
,
H.
,
Commun. Math. Phys.
115
,
477
(
1988
).
4.
Anderson
,
P. W.
,
Phys. Rev. Lett.
18
,
1049
(
1967
).
5.
Arrighi
,
P.
and
Patricot
,
C.
,
Ann. Phys.
311
,
26
(
2004
).
6.
Ashtekar
,
A.
and
Schilling
,
T. A.
, preprint arXiv:gr-qc/9706069 (
1997
).
7.
Baxter
,
R. J.
,
J. Math. Phys.
9
,
650
(
1968
).
8.
Bhatia
,
R.
,
Matrix Analysis
(
Springer
,
1996
) .
9.
Brody
,
D. C.
and
Hughston
,
L. P.
,
J. Geom. Phys.
38
,
19
(
2001
); e-print arXiv:quant-ph/9906086.
10.
Chen
,
X.
,
Gu
,
Z.-C.
, and
Wen
,
X.-G.
,
Phys. Rev. B
83
,
035107
(
2011
); e-print arXiv:1008.3745.
11.
Choi
,
M.-D.
,
Linear Algebra Appl.
10
,
285
(
1975
).
12.
Daley
,
A. J.
,
Kollath
,
C.
,
Schollwöck
,
U.
, and
Vidal
,
G.
,
J. Stat. Mech.: Theory Exp.
2004
,
P04005
(
2004
); e-print arXiv:cond-mat/0403313.
13.
Duistermaat
,
J. J.
and
Kolk
,
J. A. C.
,
Lie Groups
(
Springer
,
2004
).
14.
Fannes
,
M.
,
Nachtergaele
,
B.
, and
Werner
,
R. F.
,
J. Phys. A: Math. Gen.
24
,
L185
(
1991
).
15.
Fannes
,
M.
,
Nachtergaele
,
B.
, and
Werner
,
R. F.
,
Commun. Math. Phys.
144
,
443
(
1992
).
16.
Fritzsche
,
K.
and
Grauert
,
H.
,
From Holomorphic Functions to Complex Manifolds
(
Springer
,
2002
).
17.
Giachetta
,
G.
,
Mangiarotti
,
L.
, and
Sardanashvily
,
G.
,
Geometric Formulation of Classical and Quantum Mechanics
(
World Scientific
,
2011
).
18.
Hackbusch
,
W.
and
Kühn
,
S.
,
J. Fourier Anal. Appl.
15
,
706
(
2009
).
19.
Haegeman
,
J.
,
Osborne
,
T. J.
, and
Verstraete
,
F.
, “
Post-matrix product state methods: To tangent space and beyond
,”
Phys. Rev. B
88
,
075133
(
2013
).
20.
Haegeman
,
J.
,
Cirac
,
J. I.
,
Osborne
,
T. J.
,
Pizorn
,
I.
,
Verschelde
,
H.
, and
Verstraete
,
F.
,
Phys. Rev. Lett.
107
,
070601
(
2011
); e-print arXiv:1103.0936.
21.
Haegeman
,
J.
,
Pirvu
,
B.
,
Weir
,
D. J.
,
Cirac
,
J. I.
,
Osborne
,
T. J.
,
Verschelde
,
H.
, and
Verstraete
,
F.
,
Phys. Rev. B
85
,
100408
(
2012
); e-print arXiv:1103.2286.
22.
Holtz
,
S.
,
Rohwedder
,
T.
, and
Schneider
,
R.
,
Numer. Math.
120
,
701
(
2012
).
23.
Huybrechts
,
D.
,
Complex Geometry: An Introduction
(
Springer
,
2004
).
24.
Jamiołkowski
,
A.
,
Rep. Math. Phys.
3
,
275
(
1972
).
25.
Kato
,
T.
,
Perturbation Theory for Linear Operators
(
Springer
,
1995
).
26.
27.
Klümper
,
A.
,
Schadschneider
,
A.
, and
Zittartz
,
J.
,
J. Phys. A: Math. Gen.
24
,
L955
(
1991
).
28.
Klümper
,
A.
,
Schadschneider
,
A.
, and
Zittartz
,
J.
,
Z. Phys. B
87
,
281
(
1992
).
29.
Kobayaschi
,
S.
,
Ann. Math. Pura Appl.
43
,
119
(
1957
).
30.
Kramers
,
H. A.
and
Wannier
,
G. H.
,
Phys. Rev.
60
,
263
(
1941
).
31.
Landsberg
,
J. M.
,
Qi
,
Y.
, and
Ye
,
K.
, preprint arXiv:1105.4449 (
2011
).
32.
Lee
,
J. M.
,
Introduction to Smooth Manifolds
(
Springer
,
2002
).
33.
Moroianu
,
A.
,
Lectures on Kähler Geometry
,
London Mathematical Society Student Texts
(
Cambridge University Press
,
2007
).
34.
Murg
,
V.
,
Verstraete
,
F.
, and
Cirac
,
J. I.
,
Phys. Rev. A
75
,
033605
(
2007
); e-print arXiv:cond-mat/0611522.
35.
Nakahara
,
M.
,
Geometry, Topology and Physics
, 2nd ed. (
Taylor and Francis
,
2003
) .
36.
Nielsen
,
M. A.
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2004
).
37.
It is important that this representation is linear in order to preserve the vector space structure of the tangent space.
39.
Oseledets
,
I. V.
and
Tyrtyshnikov
,
E. E.
,
SIAM J. Sci. Comput.
31
,
3744
(
2009
).
40.
Östlund
,
S.
and
Rommer
,
S.
,
Phys. Rev. Lett.
75
,
3537
(
1995
); e-print arXiv:cond-mat/9503107.
41.
Perez-Garcia
,
D.
,
Verstraete
,
F.
,
Wolf
,
M. M.
, and
Cirac
,
J. I.
,
Quantum Inf. Comput.
7
,
401
(
2007
); e-print arXiv:quant-ph/0608197.
42.
Pérez-García
,
D.
,
Wolf
,
M. M.
,
Sanz
,
M.
,
Verstraete
,
F.
, and
Cirac
,
J. I.
,
Phys. Rev. Lett.
100
,
167202
(
2008
); e-print arXiv:0802.0447.
43.
Pirvu
,
B.
,
Haegeman
,
J.
, and
Verstraete
,
F.
,
Phys. Rev. B
85
,
035130
(
2012
); e-print arXiv:1103.2735.
44.
Roman
,
S.
,
Advanced Linear Algebra
, 2nd ed.,
Graduate Texts in Mathematics
(
Springer
,
2005
).
45.
Rommer
,
S.
and
Östlund
,
S.
,
Phys. Rev. B
55
,
2164
(
1997
); e-print arXiv:cond-mat/9606213.
46.
47.
Schuch
,
N.
,
Cirac
,
I.
, and
Pérez-García
,
D.
,
Ann. Phys.
325
,
2153
(
2010
); e-print arXiv:1001.3807.
48.
Schuch
,
N.
,
Pérez-García
,
D.
, and
Cirac
,
I.
,
Phys. Rev. B
84
,
165139
(
2011
); e-print arXiv:1010.3732.
49.
Shi
,
Y.-Y.
,
Duan
,
L.-M.
, and
Vidal
,
G.
,
Phys. Rev. A
74
,
022320
(
2006
); e-print arXiv:quant-ph/0511070.
50.
Sidles
,
J. A.
,
Garbini
,
J. L.
,
Harrell
,
L. E.
,
Hero
,
A. O.
,
Jacky
,
J. P.
,
Malcomb
,
J. R.
,
Norman
,
A. G.
, and
Williamson
,
A. M.
,
New J. Phys.
11
,
065002
(
2009
); e-print arXiv:0805.1844.
51.
Sudarshan
,
E. C.
,
Mathews
,
P. M.
, and
Rau
,
J.
,
Phys. Rev.
121
,
920
(
1961
).
52.
Uschmajew
,
A.
and
Vandereycken
,
B.
, “
The geometry of algorithms using hierarchical tensors
,”
Linear Algebra and its Applications
439
,
133
166
(
2013
).
53.
Verstraete
,
F.
and
Cirac
,
J. I.
, preprint arXiv:cond-mat/0407066 (
2004
).
54.
Verstraete
,
F.
,
García-Ripoll
,
J. J.
, and
Cirac
,
J. I.
,
Phys. Rev. Lett.
93
,
207204
(
2004
); e-print arXiv:cond-mat/0406426.
55.
Verstraete
,
F.
,
Murg
,
V.
, and
Cirac
,
J. I.
,
Adv. Phys.
57
,
143
(
2008
); e-print arXiv:0907.2796.
56.
Verstraete
,
F.
,
Porras
,
D.
, and
Cirac
,
J. I.
,
Phys. Rev. Lett.
93
,
227205
(
2004
); e-print arXiv:cond-mat/0404706.
62.
63.
White
,
S. R.
,
Phys. Rev. B
48
,
10345
(
1993
).
64.
White
,
S. R.
and
Feiguin
,
A. E.
,
Phys. Rev. Lett.
93
,
076401
(
2004
); e-print arXiv:cond-mat/0403310.
65.
Zwolak
,
M.
and
Vidal
,
G.
,
Phys. Rev. Lett.
93
,
207205
(
2004
); e-print arXiv:cond-mat/0406440.
You do not currently have access to this content.