We extend the derivation of the time-dependent Hartree-Fock equation recently obtained by Benedikter et al [“Mean-field evolution of fermionic systems,” Commun. Math. Phys. (to be published)] to fermions with a relativistic dispersion law. The main new ingredient is the propagation of semiclassical commutator bounds along the pseudo-relativistic Hartree-Fock evolution.

1.
G. L.
Aki
,
P. A.
Markowich
, and
C.
Sparber
, “
Classical limit for semirelativistic Hartree systems
,”
J. Math. Phys.
49
,
102110
(
2008
).
2.
N.
Benedikter
,
M.
Porta
, and
B.
Schlein
, “
Mean-field evolution of fermionic systems
.”
Comm. Math. Phys.
(to be published).
3.
A.
Elgart
,
L.
Erdős
,
B.
Schlein
, and
H.-T.
Yau
, “
Nonlinear Hartree equation as the mean field limit of weakly coupled fermions
,”
J. Math. Pure Appl.
83
(
10
),
1241
1273
(
2004
).
4.
A.
Elgart
and
B.
Schlein
, “
Mean field dynamics of boson stars
Commun. Pure Appl. Math.
60
(
4
),
500
545
(
2007
).
5.
C.
Hainzl
,
E.
Lenzmann
and
M.
Lewin
and
B.
Schlein
, “
On blowup for time-dependent generalized Hartree-Fock equations
,”
Ann. Henri Poincaré
11
(
6
),
1023
1052
(
2010
).
6.
E. H.
Lieb
and
H. T.
Yau
, “
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics
,”
Comm. Math. Phys.
112
,
147
174
(
1987
).
7.
C.
Hainzl
and
B.
Schlein
, “
Stellar collapse in the time dependent Hartree-Fock approximation
,”
Comm. Math. Phys.
287
(
2
),
705
717
(
2009
).
8.
A.
Michelangeli
and
B.
Schlein
, “
Dynamical collapse of boson stars
,”
Comm. Math. Phys.
311
(
3
),
645
687
(
2012
).
9.
H.
Narnhofer
and
G. L.
Sewell
, “
Vlasov hydrodynamics of a quantum mechanical model
,”
Comm. Math. Phys.
79
(
1
),
9
24
(
1981
).
10.
H.
Spohn
, “
On the Vlasov hierarchy
,”
Math. Methods Appl. Sci.
3
(
4
),
445
455
(
1981
).
You do not currently have access to this content.