In this paper we derive Hirota equations associated with the simply laced affine Lie algebras |${\mathfrak {g}}^{(1)}$|g(1), where |${\mathfrak {g}}$|g is one of the simply laced complex Lie algebras |${\mathfrak {a}}_n, {\mathfrak {d}}_n, {\mathfrak {e}}_6, {\mathfrak {e}}_7$|an,dn,e6,e7 or |${\mathfrak {e}}_8$|e8, defined by finite order automorphisms of |${\mathfrak {g}}$|g which we call Lepowsky automorphisms. In particular, we investigate the Hirota equations for Lepowsky automorphisms of |${\mathfrak {e}}_6$|e6 defined by the cuspidal class E6 of the Weyl group W(E6) of |${\mathfrak {e}}_6$|e6. We also investigate the relationship between the Lepowsky automorphisms of the simply laced complex Lie algebras |${\mathfrak {g}}$|g and the conjugate canonical automorphisms defined by Kac. This analysis is applied to identify the canonical automorphisms for the cuspidal class E6 of |${\mathfrak {e}}_6$|e6.

1.
R. W.
Carter
, “
Conjugacy classes in the Weyl group
,”
Compos. Math.
25
,
1
59
(
1972
).
2.
V. G.
Drinfel'd
and
V. V.
Sokolov
, “
Lie algebras and equations of Korteweg-de Vries type
,”
J. Sov. Math.
30
,
1975
2036
(
1985
).
3.
E.
Frenkel
,
A.
Giventhal
, and
T.
Milanov
, “
Soliton equations, vertex operators, and simple singularities
,”
Funct. Anal. Other Math.
3
,
47
63
(
2010
).
4.
I. B.
Frenkel
and
V. G.
Kac
, “
Basic representations of affine Lie algebras and dual resonance models
,”
Invent. Math
62
,
23
66
(
1980
).
5.
M.
Geck
and
J.
Michel
, “
Good elements of finite Coxeter groups and representations of the Iwahori-Hecke algebras
,”
Proc. London Math. Soc.
74
,
275
305
(
1997
).
6.
A.
Giventhal
and
T.
Milanov
, “
Simple singularities and integrable hierarchies
,”
The Breadth of Symplectic and Poisson Geometry: Progress in Mathematics
(
Birkhauser
,
Basel
,
2005
), Vol.
232
, pp.
173
201
.
7.
R.
Hirota
,
The Direct Method in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2004
).
8.
M.
Jimbo
and
T.
Miwa
, “
Solitons and infinite dimensional Lie algebras
,”
Res. Inst. Math. Sci. (Kyoto)
19
,
943
1001
(
1983
).
9.
V. G.
Kac
, “
Constructing groups associated to infinite dimensional Lie algebras
,” in
Infinite-Dimensional Groups with Applications
, edited by
V. G.
Kac
(
MSRI
,
1985
), Vol.
4
, pp.
167
216
.
10.
V. G.
Kac
,
Infinite Dimensional Lie Algebras
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1985
).
11.
V. G.
Kac
and
D. H.
Peterson
, “
Regular functions on certain infinite-dimensional groups
,”
Progress in Mathematics: Arithmetic and Geometry
, edited by
M.
Artin
and
J.
Tate
(
1983
), Vol.
36
, pp.
141
166
.
12.
V. G.
Kac
and
D. H.
Peterson
, “
112 constructions of the basic representation of the loop group E8
,” in
Proceedings of the Conference on Anamolies, Geometry, Topology, Argonne
, edited by
W. A.
Bardeen
and
A. R.
White
(
World Scientific
,
1985
), pp.
276
298
.
13.
V. G.
Kac
and
M.
Wakimoto
, “
Exceptional hierarchy of soliton equations
,”
Proceedings of Symposia in Pure Math.
(
Amer. Math. Soc.
,
Providence RI
,
1989
) Vol.
49
, pp.
191
237
.
14.
J.
Lepowsky
, “
Calculus of twisted vertex operators
,”
Proc. Natl. Sci. U.S.A.
82
,
8295
8299
(
1985
).
15.
J.
Lepowsky
and
R. L.
Wilson
, “
The structure of standard modules. I: Universal algebras and Rogers-Ramanujan identities
,”
Invent. Math.
77
,
199
(
1984
).
16.
D. H.
Peterson
and
V. G.
Kac
, “
Infinite flag varieties and conjugacy theorems
,”
Proc. Natl. Sci. U.S.A.
80
,
1778
1782
(
1983
).
You do not currently have access to this content.