We explicitly determine all Rota-Baxter operators (of weight zero) on |$\mathrm{sl(2,\mathbb {C})}$| sl (2,C) under the Cartan-Weyl basis. For the skew-symmetric operators, we give the corresponding skew-symmetric solutions of the classical Yang-Baxter equation in |$\mathrm{sl(2,\mathbb {C})}$| sl (2,C), confirming the related study by Semenov-Tian-Shansky. In general, these Rota-Baxter operators give a family of solutions of the classical Yang-Baxter equation in the six-dimensional Lie algebra |$\mathrm{sl(2,\mathbb {C})}\ltimes _{{\rm ad}^{\ast }} \mathrm{sl(2,\mathbb {C})}^{\ast }$| sl (2,C) ad * sl (2,C)*. They also give rise to three-dimensional pre-Lie algebras which in turn yield solutions of the classical Yang-Baxter equation in other six-dimensional Lie algebras.

1.
M.
Aguiar
, “
Pre-Poisson algebras
,”
Lett. Math. Phys.
54
,
263
277
(
2000
).
2.
C.
Bai
, “
A unified algebraic approach to the classical Yang-Baxter equation
,”
J. Phys. A: Math. Theor.
40
,
11073
11082
(
2007
).
3.
C.
Bai
, “
Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras
,”
Commun. Algebra
37
,
1016
1057
(
2009
).
4.
C.
Bai
,
L.
Guo
, and
X.
Ni
, “
Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras
,”
Commun. Math. Phys.
297
,
553
596
(
2010
).
5.
C.
Bai
,
L.
Guo
, and
X.
Ni
, “
Generalizations of the classical Yang-Baxter equation and |$\mathcal {O}$|O-operators
,”
J. Math. Phys.
52
,
063515
(
2011
).
6.
A. A.
Belavin
, “
Dynamical symmetry of integrable quantum systems
,”
Nucl. Phys. B
180
,
189
200
(
1981
).
7.
A. A.
Belavin
and
V. G.
Drinfel'd
, “
Solutions of classical Yang-Baxter equation for simple Lie algebras
,”
Funct. Anal. Appl.
16
,
159
180
(
1982
).
8.
G.
Baxter
, “
An analytic problem whose solution follows from a simple algebraic identity
,”
Pacific J. Math.
10
,
731
742
(
1960
).
9.
D.
Burde
, “
Left-symmetric algebras and pre-Lie algebras in geometry and physics
,”
Cent. Eur. J. Math.
4
,
323
357
(
2006
).
10.
V.
Chari
and
A.
Pressley
,
A Guide to Quantum Groups
(
Cambridge University Press
,
Cambridge
,
1994
).
11.
A.
Connes
and
D.
Kreimer
, “
Hopf algebras, renormalization and noncommutative geometry
,”
Commun. Math. Phys.
199
,
203
242
(
1998
).
12.
A.
Connes
and
D.
Kreimer
, “
Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem
,”
Commun. Math. Phys.
210
,
249
273
(
2000
).
13.
V.
Drinfel'd
, “
Hamiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang-Baxter equations
,”
Soviet Math. Dokl.
27
,
68
71
(
1983
).
14.
L. D.
Faddeev
and
L.
Takhtajan
, “
The quantum inverse scattering method of the inverse problem and the Heisenberg XYZ model
,”
Russ. Math. Surv.
34
,
11
68
(
1979
).
15.
L. D.
Faddeev
and
L.
Takhtajan
,
Hamiltonian Methods in the Theory of Solitons
(
Springer
,
Berlin
,
1987
).
16.
L.
Guo
, “
WHAT is a Rota-Baxter algebra
,”
Not. Am. Math. Soc.
56
,
1436
1437
(
2009
).
17.
L.
Guo
,
An Introduction to Rota-Baxter Algebra
(
International Press
,
2012
).
18.
G.-C.
Rota
, “
Baxter operators, an introduction
,” in
Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries
, edited by
Joseph P. S.
Kung
(
Birkhäuser
,
Boston
,
1995
).
19.
M. A.
Semenov-Tian-Shansky
, “
What a classical r-matrix is?
Funct. Anal. Appl.
17
,
259
272
(
1983
).
20.
A.
Stolin
, “
On rational solutions of Yang-Baxter equation for sl(n)
,”
Math. Scand.
69
,
57
80
(
1991
).
21.
A.
Stolin
, “
Constant solutions of Yang-Baxter equation for sl(2) and sl(3)
,”
Math. Scand.
69
,
81
88
(
1991
).
You do not currently have access to this content.