We explicitly determine all Rota-Baxter operators (of weight zero) on |$\mathrm{sl(2,\mathbb {C})}$| under the Cartan-Weyl basis. For the skew-symmetric operators, we give the corresponding skew-symmetric solutions of the classical Yang-Baxter equation in |$\mathrm{sl(2,\mathbb {C})}$|, confirming the related study by Semenov-Tian-Shansky. In general, these Rota-Baxter operators give a family of solutions of the classical Yang-Baxter equation in the six-dimensional Lie algebra |$\mathrm{sl(2,\mathbb {C})}\ltimes _{{\rm ad}^{\ast }} \mathrm{sl(2,\mathbb {C})}^{\ast }$|. They also give rise to three-dimensional pre-Lie algebras which in turn yield solutions of the classical Yang-Baxter equation in other six-dimensional Lie algebras.
REFERENCES
1.
M.
Aguiar
, “Pre-Poisson algebras
,” Lett. Math. Phys.
54
, 263
–277
(2000
).2.
C.
Bai
, “A unified algebraic approach to the classical Yang-Baxter equation
,” J. Phys. A: Math. Theor.
40
, 11073
–11082
(2007
).3.
C.
Bai
, “Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras
,” Commun. Algebra
37
, 1016
–1057
(2009
).4.
C.
Bai
, L.
Guo
, and X.
Ni
, “Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras
,” Commun. Math. Phys.
297
, 553
–596
(2010
).5.
C.
Bai
, L.
Guo
, and X.
Ni
, “Generalizations of the classical Yang-Baxter equation and |$\mathcal {O}$|-operators
,” J. Math. Phys.
52
, 063515
(2011
).6.
A. A.
Belavin
, “Dynamical symmetry of integrable quantum systems
,” Nucl. Phys. B
180
, 189
–200
(1981
).7.
A. A.
Belavin
and V. G.
Drinfel'd
, “Solutions of classical Yang-Baxter equation for simple Lie algebras
,” Funct. Anal. Appl.
16
, 159
–180
(1982
).8.
G.
Baxter
, “An analytic problem whose solution follows from a simple algebraic identity
,” Pacific J. Math.
10
, 731
–742
(1960
).9.
D.
Burde
, “Left-symmetric algebras and pre-Lie algebras in geometry and physics
,” Cent. Eur. J. Math.
4
, 323
–357
(2006
).10.
V.
Chari
and A.
Pressley
, A Guide to Quantum Groups
(Cambridge University Press
, Cambridge
, 1994
).11.
A.
Connes
and D.
Kreimer
, “Hopf algebras, renormalization and noncommutative geometry
,” Commun. Math. Phys.
199
, 203
–242
(1998
).12.
A.
Connes
and D.
Kreimer
, “Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem
,” Commun. Math. Phys.
210
, 249
–273
(2000
).13.
V.
Drinfel'd
, “Hamiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang-Baxter equations
,” Soviet Math. Dokl.
27
, 68
–71
(1983
).14.
L. D.
Faddeev
and L.
Takhtajan
, “The quantum inverse scattering method of the inverse problem and the Heisenberg XYZ model
,” Russ. Math. Surv.
34
, 11
–68
(1979
).15.
L. D.
Faddeev
and L.
Takhtajan
, Hamiltonian Methods in the Theory of Solitons
(Springer
, Berlin
, 1987
).16.
17.
18.
G.-C.
Rota
, “Baxter operators, an introduction
,” in Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries
, edited by Joseph P. S.
Kung
(Birkhäuser
, Boston
, 1995
).19.
M. A.
Semenov-Tian-Shansky
, “What a classical r-matrix is?
” Funct. Anal. Appl.
17
, 259
–272
(1983
).20.
A.
Stolin
, “On rational solutions of Yang-Baxter equation for sl(n)
,” Math. Scand.
69
, 57
–80
(1991
).21.
A.
Stolin
, “Constant solutions of Yang-Baxter equation for sl(2) and sl(3)
,” Math. Scand.
69
, 81
–88
(1991
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.