Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.
REFERENCES
1.
K.
Pearson
, “The problem of the random walk
,” Nature
72
, 294
(1905
). 2.
Raleigh
, “On the resultant of a large number of vibrations of the same pitch and of arbitrary phase
,” Philosophical Magazine
10
, 73
–78
(1880
). 3.
Raleigh
, “The problem of the random walk
,” Nature
72
, 318
(1905
). 4.
L.
Bachelier
, “Théorie de la spéculation
,” Annales Scientifiques de l’École Normale Supérieure
3
, 21
–86
(1900
).5.
G.
Pólya
, “Wahrscheinlichkeitstheoretisches über die ‘Irrfahrt’
,” Mitteilungen der Physikalischen Gesellschaft Zürich
19
, 75
–86
(1919
).6.
G.
Pólya
, “Quelques problèmes de probabilité se rapportant à la ‘promenade au hasard’
,” l’Enseignement Mathématique
20
, 444
–445
(1919
).7.
N.
Metropolis
and S.
Ulam
, “The Monte Carlo method
,” J. Am. Stat. Assoc.
44
, 335
–341
(1949
). 8.
C. H.
Papadimitriou
, “On selecting a satisfying truth assignment
,” in Proceedings of the 32nd Annual Symposium on Foundations of Computer Science
(1991
), pp. 163
–169
.9.
U.
Schöning
, “A probabilistic algorithm for k-SAT and constraint satisfaction problems
,” in Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(1999
), pp. 410
–414
.10.
D. A.
Meyer
, “From quantum cellular automata to quantum lattice gases
,” J. Stat. Phys.
85
, 551
–574
(1996
). 11.
A.
Ambainis
, E.
Bach
, A.
Nayak
, A.
Vishwanath
, and J.
Watrous
, “One-dimensional quantum walks
,” Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing
, STOC ’01
(2001
), pp. 37
–49
.12.
B. M.
Boghosian
and W.
Taylor
, “Simulating quantum mechanics on a quantum computer
,” Phys. D–Nonlinear Phenom.
120
, 30
–42
(1998
). 13.
L.
Grover
, “A fast quantum mechanical algorithm for database search
,” in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(1996
), pp. 212
–219
.14.
N.
Shenvi
, J.
Kempe
, and K. B.
Whaley
, “Quantum random walk search algorithm
,” Phys. Rev. A
67
, 052307-1
–052307-11
(2003
). 15.
A.
Ambainis
, J.
Kempe
, and A.
Rivosh
, “Coins make quantum walks faster
,” in Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms
(2005
), pp. 1099
–1108
.16.
E.
Farhi
and S.
Gutmann
, “Analog analogue of a digital quantum computation
,” Phys. Rev. A
57
, 2403
–2406
(1998
). 17.
A. M.
Childs
and J.
Goldstone
, “Spatial search by quantum walk
,” Phys. Rev. A
70
, 022314-1
–022314-11
(2004
).18.
A. M.
Childs
and J.
Goldstone
, “Spatial search and the Dirac equation
,” Phys. Rev. A
70
, 042312-1
–042312-5
(2004
).19.
E.
Farhi
, J.
Goldstone
, and S.
Gutmann
, “A quantum algorithm for the Hamiltonian NAND tree
,” Theory Comput.
4
, 169
–190
(2008
). 20.
A. M.
Childs
, R.
Cleve
, E.
Deotto
, E.
Farhi
, S.
Gutmann
, and A. M.
Childs
, “Exponential algorithmic speedup by a quantum walk
,” in Proceedings of the 35th ACM Symposium on the Theory of Computing
(2003
), pp. 59
–68
.21.
W. J. C.
Orr
, “Statistical treatment of polymer solutions at infinite dilution
,” Trans. Faraday Soc.
43
, 12
–27
(1947
). 22.
P. J.
Flory
, “The configuration of real polymer chains
,” J. Chem. Phys.
17
, 303
–310
(1949
). 23.
W.
Kuhn
, “Über die Gestalt fadenförmiger Moleküle in Lösungen
,” Kolloid-Z.
68
, 2
–15
(1934
). 24.
P. J.
Flory
and T. G.
Fox Jr.
, “Treatment of intrinsic viscosities
,” J. Am. Chem. Soc.
73
, 1904
–1908
(1951
). 25.
G. F.
Lawler
, “A self-avoiding random walk
,” Duke Math. J.
47
, 655
–693
(1980
). 26.
R.
Pemantle
, “Choosing a spanning tree for the integer lattice uniformly
,” Ann. Probab.
19
, 1559
–1574
(1991
). 27.
D. B.
Wilson
, “Generating random spanning trees more quickly than the cover time
,” in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(1996
), pp. 296
–303
.28.
J. G.
Propp
and D. B.
Wilson
, “How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph
,” J. Algorithms
27
, 170
–217
(1998
). 29.
T. A.
Brun
, H. A.
Carteret
, and A.
Ambainis
, “Quantum walks driven by many velocities
,” Phys. Rev. A
67
, 052317-1
–052317-17
(2003
).30.
T. A.
Brun
, H. A.
Carteret
, and A.
Ambainis
, “Quantum to classical transition for random walks
,” Phys. Rev. Lett.
91
, 130602-1
–130602-4
(2003
).31.
M.
Mc Gettrick
, “One dimensional quantum walks with memory
,” Quantum Inf. Comput.
10
, 0509
–0524
(2010
).32.
P. P.
Rohde
, G. K.
Brennen
, and A.
Gilchrist
, “Quantum walks with memory provided by recycled velocities and a memory of the velocity-flip history
,” Phys. Rev. A
87
, 052302-1
–052302-11
(2013
). 33.
T.
Proctor
, K.
Barr
, B.
Hanson
, S.
Martiel
, V.
Pavlovic
, A.
Bullivant
, and V.
Kendon
, “Non-reversal and non-repeating quantum walks
,” Phys. Rev. A
89
, 042332-1
–042332-8
(2014
). 34.
C.
Camilleri
, P. P.
Rohde
, and J.
Twamley
, “Quantum walks with tuneable self-avoidance in one dimension
,” Sci. Rep.
4
, 4791
(2014
). 35.
A.
Rosmanis
, “Quantum snake walk on graphs
,” Phys. Rev. A
83
, 022304
(2011
). 36.
A.
Shakeel
and P.
Love
, “When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)?
,” Journal Math. Phys.
54
, 092203-1
–092203-40
(2013
). 37.
E.
Schrödinger
, “Uber die kräftefreie Bewegung in der relativistischen Quantenmechanik
,” Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse
418
–428
(1930
).38.
E.
Schrödinger
, “Zur Quantendynamik des Elektrons
,” Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse
63
–72
(1931
).39.
S. P.
Jordan
, K. S. M.
Lee
, and J.
Preskill
, “Quantum algorithms for quantum field theories
,” Science
336
, 1130
–1133
(2012
). 40.
Th. W.
Ruijgrok
and E. D. G.
Cohen
, “Deterministic lattice gas models
,” Phys. Lett. A
133
, 415
–418
(1988
). 41.
P.
Arrighi
, N.
Nesme
, and R.
Werner
, “One-dimensional quantum cellular automata over finite, unbounded configurations
,” Language and Automata Theory and Applications
, Lecture Notes in Computer Science
(2008
), Vol. 5196
, pp. 64
–75
.42.
43.
A.
Guichardet
, Symmetric Hilbert Spaces and Related Topics
, Lecture Notes in Mathematics
(Springer
, Berlin
, 1972
), Vol. 261
.44.
A. M.
Childs
, D.
Gosset
, and Z.
Webb
, “Universal computation by multiparticle quantum walk
,” Science
339
, 791
–794
(2013
). © 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.