Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the history information arise naturally as geometrical degrees of freedom on the lattice.

1.
K.
Pearson
, “
The problem of the random walk
,”
Nature
72
,
294
(
1905
).
2.
Raleigh
, “
On the resultant of a large number of vibrations of the same pitch and of arbitrary phase
,”
Philosophical Magazine
10
,
73
78
(
1880
).
3.
Raleigh
, “
The problem of the random walk
,”
Nature
72
,
318
(
1905
).
4.
L.
Bachelier
, “
Théorie de la spéculation
,”
Annales Scientifiques de l’École Normale Supérieure
3
,
21
86
(
1900
).
5.
G.
Pólya
, “
Wahrscheinlichkeitstheoretisches über die ‘Irrfahrt’
,”
Mitteilungen der Physikalischen Gesellschaft Zürich
19
,
75
86
(
1919
).
6.
G.
Pólya
, “
Quelques problèmes de probabilité se rapportant à la ‘promenade au hasard’
,”
l’Enseignement Mathématique
20
,
444
445
(
1919
).
7.
N.
Metropolis
and
S.
Ulam
, “
The Monte Carlo method
,”
J. Am. Stat. Assoc.
44
,
335
341
(
1949
).
8.
C. H.
Papadimitriou
, “
On selecting a satisfying truth assignment
,” in
Proceedings of the 32nd Annual Symposium on Foundations of Computer Science
(
1991
), pp.
163
169
.
9.
U.
Schöning
, “
A probabilistic algorithm for k-SAT and constraint satisfaction problems
,” in
Proceedings of the 40th Annual Symposium on Foundations of Computer Science
(
1999
), pp.
410
414
.
10.
D. A.
Meyer
, “
From quantum cellular automata to quantum lattice gases
,”
J. Stat. Phys.
85
,
551
574
(
1996
).
11.
A.
Ambainis
,
E.
Bach
,
A.
Nayak
,
A.
Vishwanath
, and
J.
Watrous
, “
One-dimensional quantum walks
,”
Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing
,
STOC ’01
(
2001
), pp.
37
49
.
12.
B. M.
Boghosian
and
W.
Taylor
, “
Simulating quantum mechanics on a quantum computer
,”
Phys. D–Nonlinear Phenom.
120
,
30
42
(
1998
).
13.
L.
Grover
, “
A fast quantum mechanical algorithm for database search
,” in
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(
1996
), pp.
212
219
.
14.
N.
Shenvi
,
J.
Kempe
, and
K. B.
Whaley
, “
Quantum random walk search algorithm
,”
Phys. Rev. A
67
,
052307-1
052307-11
(
2003
).
15.
A.
Ambainis
,
J.
Kempe
, and
A.
Rivosh
, “
Coins make quantum walks faster
,” in
Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms
(
2005
), pp.
1099
1108
.
16.
E.
Farhi
and
S.
Gutmann
, “
Analog analogue of a digital quantum computation
,”
Phys. Rev. A
57
,
2403
2406
(
1998
).
17.
A. M.
Childs
and
J.
Goldstone
, “
Spatial search by quantum walk
,”
Phys. Rev. A
70
,
022314-1
022314-11
(
2004
).
18.
A. M.
Childs
and
J.
Goldstone
, “
Spatial search and the Dirac equation
,”
Phys. Rev. A
70
,
042312-1
042312-5
(
2004
).
19.
E.
Farhi
,
J.
Goldstone
, and
S.
Gutmann
, “
A quantum algorithm for the Hamiltonian NAND tree
,”
Theory Comput.
4
,
169
190
(
2008
).
20.
A. M.
Childs
,
R.
Cleve
,
E.
Deotto
,
E.
Farhi
,
S.
Gutmann
, and
A. M.
Childs
, “
Exponential algorithmic speedup by a quantum walk
,” in
Proceedings of the 35th ACM Symposium on the Theory of Computing
(
2003
), pp.
59
68
.
21.
W. J. C.
Orr
, “
Statistical treatment of polymer solutions at infinite dilution
,”
Trans. Faraday Soc.
43
,
12
27
(
1947
).
22.
P. J.
Flory
, “
The configuration of real polymer chains
,”
J. Chem. Phys.
17
,
303
310
(
1949
).
23.
W.
Kuhn
, “
Über die Gestalt fadenförmiger Moleküle in Lösungen
,”
Kolloid-Z.
68
,
2
15
(
1934
).
24.
P. J.
Flory
and
T. G.
Fox Jr.
, “
Treatment of intrinsic viscosities
,”
J. Am. Chem. Soc.
73
,
1904
1908
(
1951
).
25.
G. F.
Lawler
, “
A self-avoiding random walk
,”
Duke Math. J.
47
,
655
693
(
1980
).
26.
R.
Pemantle
, “
Choosing a spanning tree for the integer lattice uniformly
,”
Ann. Probab.
19
,
1559
1574
(
1991
).
27.
D. B.
Wilson
, “
Generating random spanning trees more quickly than the cover time
,” in
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(
1996
), pp.
296
303
.
28.
J. G.
Propp
and
D. B.
Wilson
, “
How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph
,”
J. Algorithms
27
,
170
217
(
1998
).
29.
T. A.
Brun
,
H. A.
Carteret
, and
A.
Ambainis
, “
Quantum walks driven by many velocities
,”
Phys. Rev. A
67
,
052317-1
052317-17
(
2003
).
30.
T. A.
Brun
,
H. A.
Carteret
, and
A.
Ambainis
, “
Quantum to classical transition for random walks
,”
Phys. Rev. Lett.
91
,
130602-1
130602-4
(
2003
).
31.
M.
Mc Gettrick
, “
One dimensional quantum walks with memory
,”
Quantum Inf. Comput.
10
,
0509
0524
(
2010
).
32.
P. P.
Rohde
,
G. K.
Brennen
, and
A.
Gilchrist
, “
Quantum walks with memory provided by recycled velocities and a memory of the velocity-flip history
,”
Phys. Rev. A
87
,
052302-1
052302-11
(
2013
).
33.
T.
Proctor
,
K.
Barr
,
B.
Hanson
,
S.
Martiel
,
V.
Pavlovic
,
A.
Bullivant
, and
V.
Kendon
, “
Non-reversal and non-repeating quantum walks
,”
Phys. Rev. A
89
,
042332-1
042332-8
(
2014
).
34.
C.
Camilleri
,
P. P.
Rohde
, and
J.
Twamley
, “
Quantum walks with tuneable self-avoidance in one dimension
,”
Sci. Rep.
4
,
4791
(
2014
).
35.
A.
Rosmanis
, “
Quantum snake walk on graphs
,”
Phys. Rev. A
83
,
022304
(
2011
).
36.
A.
Shakeel
and
P.
Love
, “
When is a quantum cellular automaton (QCA) a quantum lattice gas automaton (QLGA)?
,”
Journal Math. Phys.
54
,
092203-1
092203-40
(
2013
).
37.
E.
Schrödinger
, “
Uber die kräftefreie Bewegung in der relativistischen Quantenmechanik
,”
Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse
418
428
(
1930
).
38.
E.
Schrödinger
, “
Zur Quantendynamik des Elektrons
,”
Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse
63
72
(
1931
).
39.
S. P.
Jordan
,
K. S. M.
Lee
, and
J.
Preskill
, “
Quantum algorithms for quantum field theories
,”
Science
336
,
1130
1133
(
2012
).
40.
Th. W.
Ruijgrok
and
E. D. G.
Cohen
, “
Deterministic lattice gas models
,”
Phys. Lett. A
133
,
415
418
(
1988
).
41.
P.
Arrighi
,
N.
Nesme
, and
R.
Werner
, “
One-dimensional quantum cellular automata over finite, unbounded configurations
,”
Language and Automata Theory and Applications
,
Lecture Notes in Computer Science
(
2008
), Vol.
5196
, pp.
64
75
.
42.
J.
von Neumann
, “
On infinite direct products
,”
Compos. Math.
6
,
1
77
(
1939
).
43.
A.
Guichardet
,
Symmetric Hilbert Spaces and Related Topics
,
Lecture Notes in Mathematics
(
Springer
,
Berlin
,
1972
), Vol.
261
.
44.
A. M.
Childs
,
D.
Gosset
, and
Z.
Webb
, “
Universal computation by multiparticle quantum walk
,”
Science
339
,
791
794
(
2013
).
You do not currently have access to this content.