We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green’s function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schrödinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the central scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly, the exponential decays due to the resonance poles.

1.
N.
Nakanishi
,
Prog. Theor. Phys.
19
,
607
(
1958
).
2.
I.
Prigogine
,
C.
George
,
F.
Henin
, and
L.
Rosenfeld
,
Chem. Scr.
4
,
5
(
1973
).
3.
E. C. G.
Sudarshan
,
C. B.
Chiu
, and
V.
Gorini
,
Phys. Rev. D
18
,
2914
(
1978
).
4.
A.
Bohm
,
M.
Gadella
, and
G. B.
Mainland
,
Am. J. Phys.
57
,
1103
(
1989
).
5.
T.
Petrosky
,
I.
Prigogine
, and
S.
Tasaki
,
Physica A Statistical Mechanics and its Applications
173
,
175
(
1991
).
6.
T.
Petrosky
and
I.
Prigogine
,
Chaos, Solitons Fractals
7
,
441
(
1996
).
7.
T.
Petrosky
and
I.
Prigogine
, in
Advances in Chemical Physics
, edited by
I.
Prigogine
and
S.
Rice
(
John Wiley and Sons
,
1997
), Vol.
99
, pp.
1
120
.
8.
N.
Hatano
,
Prog. Thoer. Phys. Suppl.
184
,
497
(
2010
).
9.
S.
Klaiman
and
N.
Hatano
,
J. Chem. Phys.
134
,
154111
(
2011
).
10.
M. S.
Livshits
,
Zh. Èksper. Teoret. Fiz.
31
,
121
(
1956
)
[
M. S.
Livshits
,
Sov. Phys. JETP
4
,
91
98
(
1957
)].
11.
H.
Feshbach
,
Ann. Phys. (New York)
5
,
357
(
1958
).
12.
H.
Feshbach
,
Ann. Phys. (New York)
19
,
287
(
1962
).
13.
I.
Rotter
,
Rep. Prog. Phys.
54
,
635
(
1991
).
14.
I.
Rotter
,
J. Phys. A: Math. Theor.
42
,
153001
(
2009
).
15.
R.
Nakano
,
N.
Hatano
, and
T.
Petrosky
,
Int. J. Theor. Phys.
50
,
1134
(
2011
).
16.
N.
Hatano
,
Fortschr. Phys.
61
,
238
(
2013
).
17.
G.
Ordonez
,
T.
Petrosky
, and
I.
Prigogine
,
Phys. Rev. A
63
,
052106
(
2001
).
18.
T.
Petrosky
,
G.
Ordonez
, and
I.
Prigogine
,
Phys. Rev. A
64
,
062101
(
2001
).
19.
G.
García-Calderón
,
Adv. Quant. Chem.
60
,
407
(
2010
).
20.
S.
Kim
, e-print arXiv:1210.6714 (
2014
).
21.
22.
A. J. F.
Siegert
,
Phys. Rev.
56
,
750
(
1939
).
23.
R. E.
Peierls
,
Proc. R. Soc. London A
253
,
16
(
1959
).
24.
K. J.
le Couteur
,
Proc. R. Soc. London A
256
,
115
(
1960
).
25.
Y. B.
Zel’dovich
,
Zh. Èksper. Teoret. Fiz.
39
,
776
(
1960
)
[
Y. B.
Zel’dovich
,
Sov. Phys. JETP
12
,
542
545
(
1961
)].
26.
N.
Hokkyo
,
Prog. Theor. Phys.
33
,
1116
(
1965
).
27.
28.
29.
B.
Gyarmati
and
T.
Vertse
,
Nucl. Phys. A
160
,
523
(
1971
).
30.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics (Non-relativistic Theory)
, 3rd ed. (
Pergamon Press
,
Oxford
,
1977
).
31.
W. J.
Romo
,
J. Math. Phys.
21
,
311
(
1980
).
32.
33.
34.
R.
de la Madrid
,
G.
García-Calderón
, and
J.
Muga
,
Czech. J. Phys.
55
,
1141
(
2005
).
35.
N.
Hatano
,
K.
Sasada
,
H.
Nakamura
, and
T.
Petrosky
,
Prog. Theor. Phys.
119
,
187
(
2008
).
36.
N.
Hatano
,
T.
Kawamoto
, and
J.
Feinberg
,
Pramana J. Phys.
73
,
553
(
2009
).
37.
T.
Goldzak
,
I.
Gilary
, and
N.
Moiseyev
,
Phys. Rev. A
82
,
052105
(
2010
).
38.
K.
Sasada
,
N.
Hatano
, and
G.
Ordonez
,
J. Phys. Soc. Jpn.
80
,
104707
(
2011
).
39.
N.
Moiseyev
,
Non-Hermitian Quantum Mechanics
(
Cambridge University Press
,
Cambridge
,
2011
).
40.
K.
Sasada
and
N.
Hatano
,
Phys. E
29
,
609
(
2005
).
41.
T.
Kato
,
A Short Introduction to Perturbation Theory for Linear Operators
(
Springer-Verlag
,
New York
,
1982
).
42.
S.
Garmon
,
N.
Hatano
, and
G.
Ordonez
, “Dynamical evolution of open quantum systems near the exceptional point under the QEP formalism” (unpublished).
43.
D. S.
Fisher
and
P. A.
Lee
,
Phys. Rev. B
23
,
6851
(
1981
).
44.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
1995
).
45.
R.
Landauer
,
IBM J. Res. Dev.
1
,
223
(
1957
).
46.
R. G.
Newton
,
J. Math. Phys.
1
,
319
(
1960
).
47.
R. G.
Newton
,
Scattering Theory of Waves and Particles
, 2nd ed. (
Springer-Verlag
,
New York
,
1982
).
48.
49.
S.
Albeverio
,
F.
Haake
,
P.
Kurasov
,
M.
Kuś
, and
P.
Šeba
,
J. Math. Phys.
37
,
4888
(
1996
).
50.
Y. V.
Fyodorov
and
H.-J.
Sommers
,
J. Math. Phys.
38
,
1918
(
1997
).
51.
52.
K.
Pichugin
,
H.
Schanz
, and
P.
Šeba
,
Phys. Rev. E
64
,
056227
(
2001
).
53.
A. F.
Sadreev
and
I.
Rotter
,
J. Phys. A: Math. Gen.
36
,
11413
(
2003
).
54.
J.
Okołowicz
,
M.
Płoszajczak
, and
I.
Rotter
,
Phys. Rep.
374
,
271
(
2003
).
55.
H.
Kunz
and
B.
Shapiro
,
J. Phys. A: Math. Gen.
39
,
10155
(
2006
).
56.
H.
Kunz
and
B.
Shapiro
,
Phys. Rev. B
77
,
054203
(
2008
), (6pp).
57.
K.
Sasada
and
N.
Hatano
,
J. Phys. Soc. Jpn.
77
,
025003
(
2008
), (2pp).
58.
F.
Tisseur
and
K.
Meerbergen
,
SIAM Rev.
43
,
235
(
2001
).
59.
L. A.
Khalfin
,
Zh. Èksper. Teoret. Fiz.
33
,
1371
(
1957
)
[
L. A.
Khalfin
,
Sov. Phys. JETP
6
,
1053
1063
(
1958
)].
60.
S.
Garmon
,
T.
Petrosky
,
L.
Simine
, and
D.
Segal
,
Fortschr. Phys.
61
,
261
(
2013
).
61.
R.
Peierls
,
Surprises in Theoretical Physics
(
Princeton University Press
,
Princeton
,
1979
).
62.
H.
Price
,
Stud. Hist. Philos. Mod. Phys.
37
,
498
(
2006
).
63.
G.
Ordonez
and
N.
Hatano
, Dynamical breaking of time-reversal symmetry in open quantum systems (unpublished).
You do not currently have access to this content.