The main result of this work is as follows: for arbitrary pairwise disjoint, finite intervals (αj, βj) ⊂ [0, ∞), j = 1, …, m, and for arbitrary n ≥ 2, we construct a family of periodic non-compact domains {Ωε⊂ℝn}ε>0 such that the spectrum of the Neumann Laplacian in Ωε has at least m gaps when ε is small enough, moreover the first m gaps tend to the intervals (αj, βj) as ε → 0. The constructed domain Ωε is obtained by removing from ℝn a system of periodically distributed “trap-like” surfaces. The parameter ε characterizes the period of the domain Ωε, also it is involved in a geometry of the removed surfaces.

1.
F. L.
Bakharev
,
S. A.
Nazarov
, and
K.
Ruotsalainen
, “
A gap in the spectrum of the Neumann-Laplacian on a periodic waveguide
,”
Appl. Anal.
92
(
9
),
1889
-
1915
(
2013
).
2.
D.
Borisov
,
R.
Bunoiu
, and
G.
Cardone
, “
Waveguide with non-periodically alternating Dirichlet and Robin conditions: Homogenization and asymptotics
,”
Z. Angew. Math. Phys.
64
(
3
),
439
-
472
(
2013
).
3.
D.
Borisov
and
K.
Pankrashkin
, “
Quantum waveguides with small periodic perturbations: Gaps and edges of Brillouin zones
,”
J. Phys. A: Math. Theor.
46
,
235203
(18pp.) (
2013
).
4.
D. I.
Borisov
and
K. V.
Pankrashkin
, “
Gap opening and split band edges in waveguides coupled by a periodic system of small windows
,”
Math. Notes
93
(
5-6
),
660
-
675
(
2013
).
5.
A.
Bourgeat
and
L.
Pankratov
, “
Homogenization of semilinear parabolic equations in domains with spherical traps
,”
Appl. Anal.
64
(
3-4
),
303
-
317
(
1997
).
6.
A.
Bourgeat
,
I.
Chueshov
, and
L.
Pankratov
, “
Homogenization of attractors for semilinear parabolic equations in domains with spherical traps
,”
C. R. Acad. Sci.
329
(
7
),
581
-
587
(
1999
).
7.
B. M.
Brown
,
V.
Hoang
,
M.
Plum
, and
I. G.
Wood
, “
Floquet-Bloch theory for elliptic problems with discontinuous coefficients
,” in
Spectral Theory and Analysis
,
Operator Theory: Advances and Applications
(
Birkhäuser
,
Basel
,
2011
), Vol.
214
, pp.
1
-
20
.
8.
G.
Cardone
,
V.
Minutolo
, and
S.
Nazarov
, “
Gaps in the essential spectrum of periodic elastic waveguides
,”
Z. Angew. Math. Mech.
89
(
9
),
729
-
741
(
2009
).
9.
G.
Cardone
,
T.
Durante
, and
S. A.
Nazarov
, “
The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends
,”
SIAM J. Math. Anal.
42
(
6
),
2581
-
2609
(
2010
).
10.
G.
Cardone
,
S.
Nazarov
, and
C.
Perugia
, “
A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface
,”
Math. Nachr.
283
(
9
),
1222
-
1244
(
2010
).
11.
Y.
Colin de Verdière
, “
Construction de laplaciens dont une partie finie du spectre est donnee
,”
Ann. Sci. Éc. Norm. Supér.
20
(
4
),
599
-
615
(
1987
).
12.
E. B.
Davies
and
E. M.
Harrell
 II
, “
Conformally flat Riemannian metrics, Schroedinger operators, and semiclassical approximation
,”
J. Differ. Equations
66
(
2
),
165
-
188
(
1987
).
13.
P.
Exner
and
O.
Post
, “
Convergence of spectra of graph-like thin manifolds
,”
J. Geom. Phys.
54
(
1
),
77
-
115
(
2005
).
14.
A.
Figotin
and
P.
Kuchment
, “
Band-gap structure of the spectrum of periodic dielectric and acoustic media. I. Scalar model
,”
SIAM J. Appl. Math.
56
(
1
),
68
-
88
(
1996
).
15.
A.
Figotin
and
P.
Kuchment
, “
Band-gap structure of the spectrum of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals
,”
SIAM J. Appl. Math.
56
(
6
),
1561
-
1620
(
1996
).
16.
A.
Figotin
and
P.
Kuchment
, “
Spectral properties of classical waves in high contrast periodic media
,”
SIAM J. Appl. Math.
58
(
2
),
683
-
702
(
1998
).
17.
N.
Filonov
, “
Gaps in the spectrum of the Maxwell operator with periodic coefficients
,”
Commun. Math. Phys.
240
(
1-2
),
161
-
170
(
2003
).
18.
L.
Friedlander
, “
On the density of states of periodic media in large coupling limit
,”
Commun. Partial Differ. Equations
27
(
1&2
),
355
-
380
(
2002
).
19.
L.
Friedlander
and
M.
Solomyak
, “
On the spectrum of narrow periodic waveguides
,”
Russ. J. Math. Phys.
15
(
2
),
238
-
242
(
2008
).
20.
E. L.
Green
, “
Spectral theory of Laplace-Beltrami operators with periodic metrics
,”
J. Differ. Equations
133
,
15
-
29
(
1997
).
21.
R.
Hempel
and
I.
Herbst
, “
Strong magnetic fields, Dirichlet boundaries, and spectral gaps
,”
Commun. Math. Phys.
169
(
2
),
237
-
259
(
1995
).
22.
R.
Hempel
and
K.
Lienau
, “
Spectral properties of periodic media in the large coupling limit
,”
Commun. Partial Differ. Equations
25
(
7&8
),
1445
-
1470
(
2000
).
23.
R.
Hempel
and
O.
Post
, “
Spectral gaps for periodic elliptic operators with high contrast: An overview
,” in
Progress in Analysis
(
World Sci. Publ.
,
River Edge
,
2003
), pp.
577
-
587
.
24.
V.
Hoang
,
M.
Plum
, and
C.
Wieners
, “
A computer-assisted proof for photonic band gaps
,”
ZAMP
60
(
6
),
1035
-
1952
(
2009
).
25.
H.
Hönl
,
A. W.
Maue
, and
K.
Westpfahl
, “
Theorie der Beugung [Theory of diffraction]
,” in
Encyclopedia of Physics
(
Springer-Verlag
,
Berlin
,
1961
), Vol.
5/25/1
, pp.
218
-
573
.
26.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
Berlin
,
1966
).
27.
A.
Khrabustovsky
, “
Periodic Riemannian manifold with preassigned gaps in spectrum of Laplace-Beltrami operator
,”
J. Differ. Equations
252
(
3
),
2339
-
2369
(
2012
).
28.
A.
Khrabustovskyi
, “
Periodic elliptic operators with asymptotically preassigned spectrum
,”
Asymp. Anal.
82
(
1-2
),
1
-
37
(
2013
).
29.
A.
Khrabustovskyi
and
E.
Khruslov
, “
Gaps in the spectrum of the Neumann Laplacian generated by a system of periodically distributed traps
,”
Math. Methods Appl. Sci.
(published online).
30.
P.
Kuchment
,
Floquet Theory For Partial Differential Equations
(
Birkhauser
,
Basel
,
1993
).
31.
P.
Kuchment
, “
The mathematics of photonic crystals
,” in
Mathematical Modeling in Optical Science
,
Frontiers in Applied Mathematics
(
SIAM
,
Philadelphia, PA
,
2001
), Vol.
22
, Chap. 7, pp.
207
-
272
.
32.
N. S.
Landkof
,
Foundations of Modern Potential Theory
(
Springer-Verlag
,
New York-Heidelberg
,
1972
).
33.
M.
Marcus
and
H.
Minc
,
A Survey of Matrix Theory and Matrix Inequalities
(
Allyn and Bacon
,
Boston
,
1964
).
34.
V. A.
Marchenko
and
E.
Khruslov
,
Homogenization of Partial Differential Equations
(
Birkhäuser
,
Boston
,
2006
).
35.
S. A.
Nazarov
,
K.
Ruotsalainen
, and
J.
Taskinen
, “
Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps
,”
Appl. Anal.
89
(
1
),
109
-
124
(
2010
).
36.
S. A.
Nazarov
, “
An example of multiple gaps in the spectrum of a periodic waveguide
,”
Sb. Math.
201
(
3-4
),
569
-
594
(
2010
).
37.
S. A.
Nazarov
, “
Opening of a gap in the continuous spectrum of a periodically perturbed waveguide
,”
Math. Notes
87
(
5-6
),
738
-
756
(
2010
).
38.
S. A.
Nazarov
,
K.
Ruotsalainen
, and
J.
Taskinen
, “
Spectral gaps in the Dirichlet and Neumann problems on the plane perforated by a doubleperiodic family of circular holes
,”
J. Math. Sci.
181
(
2
),
164
-
222
(
2012
).
39.
S. A.
Nazarov
, “
The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids
,”
J. Math. Sci. (N. Y.)
186
(
2
),
247
-
301
(
2012
).
40.
K.
Pankrashkin
, “
On the spectrum of a waveguide with periodic cracks
,”
J. Phys. A: Math. Theor.
43
(
47
),
474030
(7pp.) (
2010
).
41.
O.
Post
, “
Periodic manifolds with spectral gaps
,”
J. Differ. Equations
187
(
1
),
23
-
45
(
2003
).
42.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics IV: Analysis of Operators
(
Academic Press
,
New York-London
,
1978
).
43.
K.
Yoshitomi
, “
Band gap of the spectrum in periodically curved quantum waveguides
,”
J. Differ. Equations
142
(
1
),
123
-
166
(
1998
).
44.
V.
Zhikov
, “
On spectrum gaps of some divergent elliptic operators with periodic coefficients
,”
St. Petersb. Math. J.
16
(
5
),
773
-
790
(
2005
).
You do not currently have access to this content.