The main result of this work is as follows: for arbitrary pairwise disjoint, finite intervals (αj, βj) ⊂ [0, ∞), j = 1, …, m, and for arbitrary n ≥ 2, we construct a family of periodic non-compact domains {Ωε⊂ℝn}ε>0 such that the spectrum of the Neumann Laplacian in Ωε has at least m gaps when ε is small enough, moreover the first m gaps tend to the intervals (αj, βj) as ε → 0. The constructed domain Ωε is obtained by removing from ℝn a system of periodically distributed “trap-like” surfaces. The parameter ε characterizes the period of the domain Ωε, also it is involved in a geometry of the removed surfaces.
REFERENCES
1.
F. L.
Bakharev
, S. A.
Nazarov
, and K.
Ruotsalainen
, “A gap in the spectrum of the Neumann-Laplacian on a periodic waveguide
,” Appl. Anal.
92
(9
), 1889
-1915
(2013
). 2.
D.
Borisov
, R.
Bunoiu
, and G.
Cardone
, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: Homogenization and asymptotics
,” Z. Angew. Math. Phys.
64
(3
), 439
-472
(2013
). 3.
D.
Borisov
and K.
Pankrashkin
, “Quantum waveguides with small periodic perturbations: Gaps and edges of Brillouin zones
,” J. Phys. A: Math. Theor.
46
, 235203
(18pp.) (2013
). 4.
D. I.
Borisov
and K. V.
Pankrashkin
, “Gap opening and split band edges in waveguides coupled by a periodic system of small windows
,” Math. Notes
93
(5-6
), 660
-675
(2013
). 5.
A.
Bourgeat
and L.
Pankratov
, “Homogenization of semilinear parabolic equations in domains with spherical traps
,” Appl. Anal.
64
(3-4
), 303
-317
(1997
). 6.
A.
Bourgeat
, I.
Chueshov
, and L.
Pankratov
, “Homogenization of attractors for semilinear parabolic equations in domains with spherical traps
,” C. R. Acad. Sci.
329
(7
), 581
-587
(1999
). 7.
B. M.
Brown
, V.
Hoang
, M.
Plum
, and I. G.
Wood
, “Floquet-Bloch theory for elliptic problems with discontinuous coefficients
,” in Spectral Theory and Analysis
, Operator Theory: Advances and Applications
(Birkhäuser
, Basel
, 2011
), Vol. 214
, pp. 1
-20
.8.
G.
Cardone
, V.
Minutolo
, and S.
Nazarov
, “Gaps in the essential spectrum of periodic elastic waveguides
,” Z. Angew. Math. Mech.
89
(9
), 729
-741
(2009
). 9.
G.
Cardone
, T.
Durante
, and S. A.
Nazarov
, “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends
,” SIAM J. Math. Anal.
42
(6
), 2581
-2609
(2010
). 10.
G.
Cardone
, S.
Nazarov
, and C.
Perugia
, “A gap in the essential spectrum of a cylindrical waveguide with a periodic perturbation of the surface
,” Math. Nachr.
283
(9
), 1222
-1244
(2010
). 11.
Y.
Colin de Verdière
, “Construction de laplaciens dont une partie finie du spectre est donnee
,” Ann. Sci. Éc. Norm. Supér.
20
(4
), 599
-615
(1987
).12.
E. B.
Davies
and E. M.
Harrell
II, “Conformally flat Riemannian metrics, Schroedinger operators, and semiclassical approximation
,” J. Differ. Equations
66
(2
), 165
-188
(1987
). 13.
P.
Exner
and O.
Post
, “Convergence of spectra of graph-like thin manifolds
,” J. Geom. Phys.
54
(1
), 77
-115
(2005
). 14.
A.
Figotin
and P.
Kuchment
, “Band-gap structure of the spectrum of periodic dielectric and acoustic media. I. Scalar model
,” SIAM J. Appl. Math.
56
(1
), 68
-88
(1996
). 15.
A.
Figotin
and P.
Kuchment
, “Band-gap structure of the spectrum of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals
,” SIAM J. Appl. Math.
56
(6
), 1561
-1620
(1996
). 16.
A.
Figotin
and P.
Kuchment
, “Spectral properties of classical waves in high contrast periodic media
,” SIAM J. Appl. Math.
58
(2
), 683
-702
(1998
). 17.
N.
Filonov
, “Gaps in the spectrum of the Maxwell operator with periodic coefficients
,” Commun. Math. Phys.
240
(1-2
), 161
-170
(2003
). 18.
L.
Friedlander
, “On the density of states of periodic media in large coupling limit
,” Commun. Partial Differ. Equations
27
(1&2
), 355
-380
(2002
). 19.
L.
Friedlander
and M.
Solomyak
, “On the spectrum of narrow periodic waveguides
,” Russ. J. Math. Phys.
15
(2
), 238
-242
(2008
). 20.
E. L.
Green
, “Spectral theory of Laplace-Beltrami operators with periodic metrics
,” J. Differ. Equations
133
, 15
-29
(1997
). 21.
R.
Hempel
and I.
Herbst
, “Strong magnetic fields, Dirichlet boundaries, and spectral gaps
,” Commun. Math. Phys.
169
(2
), 237
-259
(1995
). 22.
R.
Hempel
and K.
Lienau
, “Spectral properties of periodic media in the large coupling limit
,” Commun. Partial Differ. Equations
25
(7&8
), 1445
-1470
(2000
). 23.
R.
Hempel
and O.
Post
, “Spectral gaps for periodic elliptic operators with high contrast: An overview
,” in Progress in Analysis
(World Sci. Publ.
, River Edge
, 2003
), pp. 577
-587
.24.
V.
Hoang
, M.
Plum
, and C.
Wieners
, “A computer-assisted proof for photonic band gaps
,” ZAMP
60
(6
), 1035
-1952
(2009
). 25.
H.
Hönl
, A. W.
Maue
, and K.
Westpfahl
, “Theorie der Beugung [Theory of diffraction]
,” in Encyclopedia of Physics
(Springer-Verlag
, Berlin
, 1961
), Vol. 5/25/1
, pp. 218
-573
.26.
27.
A.
Khrabustovsky
, “Periodic Riemannian manifold with preassigned gaps in spectrum of Laplace-Beltrami operator
,” J. Differ. Equations
252
(3
), 2339
-2369
(2012
). 28.
A.
Khrabustovskyi
, “Periodic elliptic operators with asymptotically preassigned spectrum
,” Asymp. Anal.
82
(1-2
), 1
-37
(2013
). 29.
A.
Khrabustovskyi
and E.
Khruslov
, “Gaps in the spectrum of the Neumann Laplacian generated by a system of periodically distributed traps
,” Math. Methods Appl. Sci.
(published online).30.
P.
Kuchment
, Floquet Theory For Partial Differential Equations
(Birkhauser
, Basel
, 1993
).31.
P.
Kuchment
, “The mathematics of photonic crystals
,” in Mathematical Modeling in Optical Science
, Frontiers in Applied Mathematics
(SIAM
, Philadelphia, PA
, 2001
), Vol. 22
, Chap. 7, pp. 207
-272
.32.
N. S.
Landkof
, Foundations of Modern Potential Theory
(Springer-Verlag
, New York-Heidelberg
, 1972
).33.
M.
Marcus
and H.
Minc
, A Survey of Matrix Theory and Matrix Inequalities
(Allyn and Bacon
, Boston
, 1964
).34.
V. A.
Marchenko
and E.
Khruslov
, Homogenization of Partial Differential Equations
(Birkhäuser
, Boston
, 2006
).35.
S. A.
Nazarov
, K.
Ruotsalainen
, and J.
Taskinen
, “Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps
,” Appl. Anal.
89
(1
), 109
-124
(2010
). 36.
S. A.
Nazarov
, “An example of multiple gaps in the spectrum of a periodic waveguide
,” Sb. Math.
201
(3-4
), 569
-594
(2010
). 37.
S. A.
Nazarov
, “Opening of a gap in the continuous spectrum of a periodically perturbed waveguide
,” Math. Notes
87
(5-6
), 738
-756
(2010
). 38.
S. A.
Nazarov
, K.
Ruotsalainen
, and J.
Taskinen
, “Spectral gaps in the Dirichlet and Neumann problems on the plane perforated by a doubleperiodic family of circular holes
,” J. Math. Sci.
181
(2
), 164
-222
(2012
). 39.
S. A.
Nazarov
, “The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids
,” J. Math. Sci. (N. Y.)
186
(2
), 247
-301
(2012
). 40.
K.
Pankrashkin
, “On the spectrum of a waveguide with periodic cracks
,” J. Phys. A: Math. Theor.
43
(47
), 474030
(7pp.) (2010
). 41.
O.
Post
, “Periodic manifolds with spectral gaps
,” J. Differ. Equations
187
(1
), 23
-45
(2003
). 42.
M.
Reed
and B.
Simon
, Methods of Modern Mathematical Physics IV: Analysis of Operators
(Academic Press
, New York-London
, 1978
).43.
K.
Yoshitomi
, “Band gap of the spectrum in periodically curved quantum waveguides
,” J. Differ. Equations
142
(1
), 123
-166
(1998
). 44.
V.
Zhikov
, “On spectrum gaps of some divergent elliptic operators with periodic coefficients
,” St. Petersb. Math. J.
16
(5
), 773
-790
(2005
). © 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.