In this paper, we study the evolution of superoscillating initial data for the quantum driven harmonic oscillator. Our main result shows that superoscillations are amplified by the harmonic potential and that the analytic solution develops a singularity in finite time. We also show that for a large class of solutions of the Schrödinger equation, superoscillating behavior at any given time implies superoscillating behavior at any other time.

1.
Y.
Aharonov
,
D.
Albert
, and
L.
Vaidman
,
Phys. Rev. Lett.
60
,
1351
1354
(
1988
).
2.
Y.
Aharonov
,
F.
Colombo
,
S.
Nussinov
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
,
Proc. R. Soc. A
468
,
3587
3600
(
2012
).
3.
Y.
Aharonov
,
F.
Colombo
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
,
J. Phys. A
44
,
365304
(
2011
).
4.
Y.
Aharonov
,
F.
Colombo
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
,
Complex Anal. Operator Theory
7
,
1299
1310
(
2013
).
5.
Y.
Aharonov
,
F.
Colombo
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
,
J. Math. Pures Appl.
99
,
165
173
(
2013
).
6.
Y.
Aharonov
,
F.
Colombo
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
,
Quantum Theory: A Two-time Success Story
(
Springer
,
2013
), pp.
313
325
.
7.
Y.
Aharonov
,
F.
Colombo
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
, “
Superoscillating sequences as solutions of generalized Schrödinger equations
,”
J. Math. Pures Appl.
(published online).
8.
Y.
Aharonov
,
F.
Colombo
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
,
J. Phys. A
47
,
205301
(
2014
).
9.
Y.
Aharonov
,
F.
Colombo
,
I.
Sabadini
,
D. C.
Struppa
, and
J.
Tollaksen
, “
The mathematics of superoscillations
,” preprint (
2014
).
10.
Y.
Aharonov
and
D.
Rohrlich
,
Quantum Paradoxes: Quantum Theory for the Perplexed
(
Wiley-VCH Verlag
,
Weinheim
,
2005
).
11.
Y.
Aharonov
and
L.
Vaidman
,
Phys. Rev. A
41
,
11
20
(
1990
).
12.
M. V.
Berry
, in
Quantum Coherence and Reality; in Celebration of the 60th Birthday of Yakir Aharonov
, edited
J. S.
Anandan
and
J. L.
Safko
(
World Scientific
,
Singapore
,
1994
), pp.
55
65
.
13.
M.
Berry
and
M. R.
Dennis
,
J. Phys. A
42
,
022003
(
2009
).
14.
M. V.
Berry
and
S.
Popescu
,
J. Phys. A
39
,
6965
6977
(
2006
).
15.
C. A.
Berenstein
and
D. C.
Struppa
,
Publ. RIMS, Kyoto Univ.
24
,
783
810
(
1988
).
16.
L.
Ehrenpreis
,
Fourier Analysis in Several Complex Variables
(
Wiley Interscience
,
New York
,
1970
).
17.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
18.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1965
).
19.
I. M.
Gelfand
and
A. M.
Yaglom
,
J. Math. Phys.
1
,
48
(
1960
).
20.
E. W.
Montroll
,
Commun. Pure Appl. Math.
5
,
415
(
1952
).
21.
L. S.
Schulman
,
Techniques and Applications of Path Integration
(
Dover
,
2005
).
22.
B. A.
Taylor
,
Entire Functions and Related Parts of Analysis
,
in Proceedings of Symposia in Pure Mathematics, La Jolla, CA, 1966
(
American Mathematical Society
,
Providence, RI
,
1968
), pp.
468
474
.
You do not currently have access to this content.