Consistent boundary conditions for Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models and the corresponding boundary theories are analyzed. As their mathematical structures, we introduce a generalization of differential graded symplectic manifolds, called twisted QP manifolds, in terms of graded symplectic geometry, canonical functions, and QP pairs. We generalize the AKSZ construction of topological sigma models to sigma models with Wess-Zumino terms and show that all the twisted Poisson-like structures known in the literature can actually be naturally realized as boundary conditions for AKSZ sigma models.
REFERENCES
1.
A.
Alekseev
, Y.
Kosmann-Schwarzbach
, and E.
Meinrenken
, “Quasi-Poisson manifolds
,” Canadian J. Math.
54
, 3
–29
(2002
); e-print arXiv:math/0006168.2.
M.
Alexandrov
, M.
Kontsevich
, A.
Schwartz
, and O.
Zaboronsky
, “The geometry of the master equation and topological quantum field theory
,” Int. J. Mod. Phys. A
12
, 1405
(1997
); e-print arXiv:hep-th/9502010.3.
R.
Bousso
, “The holographic principle
, Rev. Mod. Phys.
74
, 825
–874
(2002
).4.
P.
Bouwknegt
and B.
Jurčo
, “AKSZ construction of topological open p-brane action and Nambu brackets
,” Rev. Math. Phys.
25
, 1330004
(2013
); e-print arXiv:1110.0134 [math-ph].5.
D.
Calaque
, “Lagrangian structures on mapping stacks and semi-classical TFTs
,” e-print arXiv:1306.3235 [math.AG] (unpublished).6.
C.
Carmeli
, L.
Caston
, and R.
Fioresi
, “Mathematical foundation of supersymmetry
,” in EMS Series of Lectures in Mathematics
(European Mathematical Society
, Zurich
, 2011
).7.
A. S.
Cattaneo
and G.
Felder
, “A path integral approach to the Kontsevich quantization formula
,” Commun. Math. Phys.
212
, 591
(2000
); e-print arXiv:math/9902090.8.
A. S.
Cattaneo
and G.
Felder
, “On the AKSZ formulation of the Poisson sigma model
,” Lett. Math. Phys.
56
, 163
(2001
); e-print arXiv:math/0102108.9.
A.
Cattaneo
, P.
Mnev
, and N.
Reshetikhin
, “Classical BV theories on manifolds with boundary
,” Commun. Math. Phys.
332
, 535
(2014
).10.
A. S.
Cattaneo
, P.
Mnev
, and N.
Reshetikhin
, “Classical and quantum Lagrangian field theories with boundary
,” PoS CORFU
2011
, 044
; e-print arXiv:1207.0239 [math-ph].11.
A. S.
Cattaneo
and F.
Schätz
, “Introduction to supergeometry
,” Rev. Math. Phys.
23
, 669
–690
(2011
).12.
T.
Courant
, “Dirac manifolds
,” Trans. A. M. S.
319
, 631
(1990
).13.
I. Ya.
Dorfman
, “Dirac structures of integrable evolution equations
,” Phys. Lett. A
125
, 240
–246
(1987
).14.
R. L.
Fernandes
, “Lie algebroids, holonomy, and characteristic class
,” Adv. Math.
170
, 119
–179
(2002
).15.
D.
Fiorenza
, C. L.
Rogers
, and U.
Schreiber
, “A higher Chern-Weil derivation of AKSZ σ-models
,” Int. J. Geom. Meth. Mod. Phys.
10
, 1250078
(2013
); e-print arXiv:1108.4378 [math-ph].16.
D.
Fiorenza
, H.
Sati
, and U.
Schreiber
, “Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields
,” e-print arXiv:1308.5264 [hep-th] (unpublished).17.
Y.
Fregier
and M.
Zambon
, “Simultaneous deformations and Poisson geometry
,” e-print arXiv:1202.2896 [math.QA] (unpublished).18.
Y.
Fregier
and M.
Zambon
, “Simultaneous deformations of algebras and morphisms via derived brackets
,” e-print arXiv:1301.4864 [math.QA] (unpublished).19.
20.
M.
Hansen
and T.
Strobl
, “First class constrained systems and twisting of Courant algebroids by a closed 4-form
,” e-print arXiv:0904.0711 [hep-th] Fundamental interactions, 115–144, World Sci. Publ., Hackensack, NJ, 2010.21.
H.
Hata
and B.
Zwiebach
, “Developing the covariant Batalin-Vilkovisky approach to string theory
,” Ann. Phys.
229
, 177
(1994
); e-print arXiv:hep-th/9301097.22.
23.
N.
Ikeda
, “Two-dimensional gravity and nonlinear gauge theory
,” Annals Phys.
235
, 435
(1994
); e-print arXiv:hep-th/9312059.24.
N.
Ikeda
, “Chern-Simons gauge theory coupled with BF theory
,” Int. J. Mod. Phys. A
18
, 2689
(2003
); e-print arXiv:hep-th/0203043.25.
N.
Ikeda
, “Lectures on AKSZ topological field theories for physicists
,” e-print arXiv:1204.3714 [hep-th] (unpublished).26.
N.
Ikeda
and K. I.
Izawa
, “General form of dilaton gravity and nonlinear gauge theory
,” Prog. Theor. Phys.
90
, 237
(1993
); e-print arXiv:hep-th/9304012.27.
N.
Ikeda
and K.
Uchino
, “QP-Structures of degree 3 and 4D topological field theory
,” Commun. Math. Phys.
303
, 317
(2011
); e-print arXiv:1004.0601 [hep-th].28.
N.
Ikeda
and X.-M.
Xu
, “Current algebras from DG symplectic pairs in supergeometry
,” e-print arXiv:1308.0100 [math-ph] (unpublished).29.
C.
Klimcik
and T.
Strobl
, “WZW-Poisson manifolds
,” J. Geom. Phys.
43
, 341
(2002
); e-print arXiv:math/0104189.30.
M.
Kontsevich
, “Deformation quantization of Poisson manifolds
,” Lett. Math. Phys.
66
, 157
(2003
); e-print arXiv:q-alg/9709040.31.
Y.
Kosmann-Schwarzbach
and F.
Magri
, “Poisson-Nijenhuis structures
,” Ann. Inst. Henri Poincare, Serie A
53
, 35
–81
(1990
).32.
Y.
Kosmann-Schwarzbach
, “Derived brackets
,” Lett. Math. Phys.
69
, 61
(2004
); e-print arXiv:math.dg/0312524.33.
Y.
Kosmann-Schwarzbach
, “Poisson and symplectic functions in Lie algebroid theory
,” in Higher Structures in Geometry and Physics, in honor of Murray Gerstenhaber and Jim Stashef
, Progress in Mathematics
Vol. 287
, edited by Alberto
Cattaneo
, Antony
Giaquinto
, and Ping
Xu
(Birkhauser
, 2011
), pp. 243
–268
; e-print arXiv:0711.2043.34.
H.-L.
Lang
, Y.-H.
Sheng
, and X.-M.
Xu
, “Graded Poisson manifolds up to homotopy
,” e-print arXiv:1312.4096 (unpublished).35.
Z.-J.
Liu
, A.
Weinstein
, and P.
Xu
, “Manin triples for Lie bialgebroids
,” J. Diff. Geom.
45
, 547
–574
(1997
).36.
J.-H.
Lu
, “Poisson homogeneous spaces and Lie algebroids associated to Poisson actions
,” Duke Math. J.
86
, 261
–304
(1997
).37.
T.
Pantev
, B.
Toen
, M.
Vaquie
, and G.
Vezzosi
, “Shifted symplectic structures
,” Publications mathématiques de l’IHÉS
117
, 271
–328
(2013
); e-print arXiv:1111.3209 [math.AG].38.
J. S.
Park
, “Topological open p-branes
,” in Symplectic Geometry and Mirror Symmetry
, edited by K.
Fukaya
, Y.-G.
Oh
, K.
Ono
, and G.
Tian
(World Scientific
, 2001
), pp. 311
–384
.39.
D.
Roytenberg
, “Courant algebroids, derived brackets and even symplectic supermanifolds
,” e-print arXiv:math.DG/9910078 (unpublished).40.
D.
Roytenberg
, “Quasi Lie bialgebroids and twisted Poisson manifolds
,” Lett. Math. Phys.
61
, 123
(2002
); e-print arXiv:math/0112152 [math-qa].41.
D.
Roytenberg
, “AKSZ-BV formalism and Courant algebroid-induced topological field theories
,” Lett. Math. Phys.
79
, 143
(2007
); e-print arXiv:hep-th/0608150.42.
P.
Schaller
and T.
Strobl
, “Poisson structure induced (topological) field theories
,” Mod. Phys. Lett. A
9
, 3129
(1994
); e-print arXiv:hep-th/9405110.43.
A.
Schwarz
, “Geometry of Batalin-Vilkovisky quantization
,” Commun. Math. Phys.
155
, 249
(1993
), e-print arXiv:hep-th/9205088;A.
Schwarz
, “Semiclassical approximation in Batalin-Vilkovisky formalism
,” Commun. Math. Phys.
158
, 373
(1993
); e-print arXiv:hep-th/9210115.44.
P. Ševera and
A.
Weinstein
, “Poisson geometry with a 3 form background
,” Prog. Theor. Phys. Suppl.
144
, 145
(2001
); e-print arXiv:math/0107133 [math-sg].45.
Y.
Terashima
, “On Poisson functions
,” J. Sympl. Geom.
6
, 1
–7
(2008
).46.
V. S.
Varadarajan
, “Supersymmetry for mathematicians: An introduction
,” Courant Lecture Notes Series
(AMS
, New York
, 2004
).47.
A.
Vaintrob
, “Lie algebroids and homological vector fields
,” Uspekhi Mat. Nauk
52
(2(314)
), 161
–162
(1997
)A.
Vaintrob
, [Russian Math. Surveys
52
(2
), 428
–429
(1997
)].48.
T.
Voronov
, “Graded manifolds and drinfeld doubles for Lie bialgebroids
,” in Quantization, Poisson Brackets and Beyond
, Contemporary Mathematics
Vol. 315
, edited by Theodore
Voronov
(Amer. Math. Soc.
, Providence, RI
, 2002
), pp. 131
–168
; e-print arXiv:math/0105237 [math-dg].49.
X.-M.
Xu
, “Twisted Courant algebroids and coisotropic Cartan geometries
,” J. Geom. Phys.
82
, 124
–131
(2014
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.