Within the framework of Connes’ noncommutative geometry, we define and study globally non-trivial (or topologically non-trivial) almost-commutative manifolds. In particular, we focus on those almost-commutative manifolds that lead to a description of a (classical) gauge theory on the underlying base manifold. Such an almost-commutative manifold is described in terms of a “principal module,” which we build from a principal fibre bundle and a finite spectral triple. We also define the purely algebraic notion of “gauge modules,” and show that this yields a proper subclass of the principal modules. We describe how a principal module leads to the description of a gauge theory, and we provide two basic yet illustrative examples.

1.
A.
Connes
,
Noncommutative Geometry
(
Academic Press
,
San Diego, CA
,
1994
).
2.
A.
Chamseddine
,
A.
Connes
, and
M.
Marcolli
, “
Gravity and the standard model with neutrino mixing
,”
Adv. Theor. Math. Phys.
11
,
991
(
2007
).
3.
J.
Boeijink
and
W. D.
van Suijlekom
, “
The noncommutative geometry of Yang-Mills fields
,”
J. Geom. Phys.
61
,
1122
1134
(
2011
).
4.
K.
van den Dungen
and
W. D.
van Suijlekom
, “
Particle physics from almost-commutative spacetimes
,”
Rev. Math. Phys.
24
,
1230004
(
2012
).
5.
A.
Connes
, “
On the spectral characterization of manifolds
,”
J. Noncommut. Geom.
7
,
1
82
(
2013
).
6.
A.
Chamseddine
and
A.
Connes
, “
The spectral action principle
,”
Commun. Math. Phys.
186
,
731
750
(
1997
).
7.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
(
John Wiley & Sons
,
New York/London
,
1963
), Vol.
I
.
8.
B.
Ćaćić
, “
A reconstruction theorem for almost-commutative spectral triples
,”
Lett. Math. Phys.
100
,
181
202
(
2012
).
9.
R.
Swan
, “
Vector bundles and projective modules
,”
Trans. Am. Math. Soc.
105
,
264
277
(
1962
).
10.
D.
Bleecker
,
Gauge Theory and Variational Principles
,
Global Analysis Pure and Applied Series A
Vol.
1
(
Addison-Wesley Publishing Co.
,
Reading, MA
,
1981
).
11.
A.
Hatcher
,
Algebraic Topology
(
Cambridge University Press
,
2002
).
12.
G.
Kasparov
, “
The operator K-functor and extensions of C*-algebras
,”
Izv. Akad. Nauk SSSR
44
,
571
636
(
1980
).
13.
B.
Blackadar
,
K-Theory for Operator Algebras
, 2nd ed.,
Mathematical Sciences Research Institute Publications
(
Cambridge University Press
,
1998
).
14.
S.
Baaj
and
P.
Julg
, “
Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertiens
,”
C. R. Acad. Sci. Paris Sér. I Math.
296
,
875
878
(
1983
).
15.
B.
Mesland
, “
Unbounded bivariant K-theory and correspondences in noncommutative geometry
,”
J. Reine Angew. Math.
691
,
1
244
(
2014
).
16.
D.
Kucerovsky
, “
The KK-product of unbounded modules
,”
K-Theory
11
,
17
34
(
1997
).
17.
A.
Connes
and
J.
Lott
, “
Particle models and noncommutative geometry
,”
Nucl. Phys. B: Proc. Suppl.
18
,
29
47
(
1991
).
18.
M.
Dubois-Violette
,
R.
Kerner
, and
J.
Madore
, “
Noncommutative differential geometry of matrix algebras
,”
J. Math. Phys.
31
,
316
(
1990
).
19.
M.
Dubois-Violette
,
R.
Kerner
, and
J.
Madore
, “
Noncommutative differential geometry and new models of gauge theory
,”
J. Math. Phys.
31
,
323
(
1990
).
20.
M.
Dubois-Violette
,
R.
Kerner
, and
J.
Madore
, “
Classical bosons in a non-commutative geometry
,”
Classical Quantum Gravity
6
,
1709
(
1989
).
21.
M.
Dubois-Violette
,
R.
Kerner
, and
J.
Madore
, “
Gauge bosons in a noncommutative geometry
,”
Phys. Lett. B.
217
,
485
488
(
1989
).
22.
A.
Connes
, “
Gravity coupled with matter and the foundation of non-commutative geometry
,”
Commun. Math. Phys.
182
,
155
176
(
1996
).
23.
B.
Iochum
,
T.
Schücker
, and
C.
Stephan
, “
On a classification of irreducible almost commutative geometries
,”
J. Math. Phys.
45
,
5003
(
2004
).
24.
T.
Krajewski
, “
Classification of finite spectral triples
,”
J. Geom. Phys.
28
,
1
30
(
1998
).
25.
M.
Paschke
and
A.
Sitarz
, “
Discrete spectral triples and their symmetries
,”
J. Math. Phys.
39
,
6191
(
1998
).
26.
J.
Gracia-Bondía
,
J.
Várilly
, and
H.
Figueroa
,
Elements of Noncommutative Geometry
(
Birkhäuser Advanced Texts
,
2001
).
27.
J.
Kaad
and
M.
Lesch
, “
A local global principle for regular operators in Hilbert-modules
,”
J. Funct. Anal.
262
,
4540
4569
(
2012
).
28.
W. D.
van Suijlekom
,
Noncommutative Geometry and Particle Physics
(
Springer
,
2014
).
29.
S.
Lazzarini
and
T.
Schücker
, “
A farewell to unimodularity
,”
Phys. Lett. B.
510
,
277
284
(
2001
).
30.
A.
Connes
, “
Noncommutative geometry and the standard model with neutrino mixing
,”
J. High Energy Phys.
11
(
2006
)
081
.
31.
K.
van den Dungen
and
W. D.
van Suijlekom
, “
Electrodynamics from noncommutative geometry
,”
J. Noncommut. Geom.
7
,
433
456
(
2013
).
32.
I.
Raeburn
and
D.
Williams
,
Morita Equivalence and Continuous-Trace C*-Algebras
,
Mathematical Surveys and Monographs
(
American Mathematical Society
,
1998
).
33.
C.
Schochet
, “
The Dixmier-Douady invariant for dummies
,”
Not. Am. Math. Soc.
56
,
809
816
(
2009
), url: http://www.ams.org/notices/200907/rtx090700809p.pdf.
34.
A. H.
Chamseddine
and
A.
Connes
, “
Resilience of the spectral standard model
,”
J. High Energy Phys.
09
(
2012
)
104
.
You do not currently have access to this content.