Within the framework of Connes’ noncommutative geometry, we define and study globally non-trivial (or topologically non-trivial) almost-commutative manifolds. In particular, we focus on those almost-commutative manifolds that lead to a description of a (classical) gauge theory on the underlying base manifold. Such an almost-commutative manifold is described in terms of a “principal module,” which we build from a principal fibre bundle and a finite spectral triple. We also define the purely algebraic notion of “gauge modules,” and show that this yields a proper subclass of the principal modules. We describe how a principal module leads to the description of a gauge theory, and we provide two basic yet illustrative examples.
REFERENCES
1.
2.
A.
Chamseddine
, A.
Connes
, and M.
Marcolli
, “Gravity and the standard model with neutrino mixing
,” Adv. Theor. Math. Phys.
11
, 991
(2007
).3.
J.
Boeijink
and W. D.
van Suijlekom
, “The noncommutative geometry of Yang-Mills fields
,” J. Geom. Phys.
61
, 1122
–1134
(2011
).4.
K.
van den Dungen
and W. D.
van Suijlekom
, “Particle physics from almost-commutative spacetimes
,” Rev. Math. Phys.
24
, 1230004
(2012
).5.
A.
Connes
, “On the spectral characterization of manifolds
,” J. Noncommut. Geom.
7
, 1
–82
(2013
).6.
A.
Chamseddine
and A.
Connes
, “The spectral action principle
,” Commun. Math. Phys.
186
, 731
–750
(1997
).7.
S.
Kobayashi
and K.
Nomizu
, Foundations of Differential Geometry
(John Wiley & Sons
, New York/London
, 1963
), Vol. I
.8.
B.
Ćaćić
, “A reconstruction theorem for almost-commutative spectral triples
,” Lett. Math. Phys.
100
, 181
–202
(2012
).9.
R.
Swan
, “Vector bundles and projective modules
,” Trans. Am. Math. Soc.
105
, 264
–277
(1962
).10.
D.
Bleecker
, Gauge Theory and Variational Principles
, Global Analysis Pure and Applied Series A
Vol. 1
(Addison-Wesley Publishing Co.
, Reading, MA
, 1981
).11.
12.
G.
Kasparov
, “The operator K-functor and extensions of C*-algebras
,” Izv. Akad. Nauk SSSR
44
, 571
–636
(1980
).13.
B.
Blackadar
, K-Theory for Operator Algebras
, 2nd ed., Mathematical Sciences Research Institute Publications
(Cambridge University Press
, 1998
).14.
S.
Baaj
and P.
Julg
, “Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertiens
,” C. R. Acad. Sci. Paris Sér. I Math.
296
, 875
–878
(1983
).15.
B.
Mesland
, “Unbounded bivariant K-theory and correspondences in noncommutative geometry
,” J. Reine Angew. Math.
691
, 1
–244
(2014
).16.
D.
Kucerovsky
, “The KK-product of unbounded modules
,” K-Theory
11
, 17
–34
(1997
).17.
A.
Connes
and J.
Lott
, “Particle models and noncommutative geometry
,” Nucl. Phys. B: Proc. Suppl.
18
, 29
–47
(1991
).18.
M.
Dubois-Violette
, R.
Kerner
, and J.
Madore
, “Noncommutative differential geometry of matrix algebras
,” J. Math. Phys.
31
, 316
(1990
).19.
M.
Dubois-Violette
, R.
Kerner
, and J.
Madore
, “Noncommutative differential geometry and new models of gauge theory
,” J. Math. Phys.
31
, 323
(1990
).20.
M.
Dubois-Violette
, R.
Kerner
, and J.
Madore
, “Classical bosons in a non-commutative geometry
,” Classical Quantum Gravity
6
, 1709
(1989
).21.
M.
Dubois-Violette
, R.
Kerner
, and J.
Madore
, “Gauge bosons in a noncommutative geometry
,” Phys. Lett. B.
217
, 485
–488
(1989
).22.
A.
Connes
, “Gravity coupled with matter and the foundation of non-commutative geometry
,” Commun. Math. Phys.
182
, 155
–176
(1996
).23.
B.
Iochum
, T.
Schücker
, and C.
Stephan
, “On a classification of irreducible almost commutative geometries
,” J. Math. Phys.
45
, 5003
(2004
).24.
T.
Krajewski
, “Classification of finite spectral triples
,” J. Geom. Phys.
28
, 1
–30
(1998
).25.
M.
Paschke
and A.
Sitarz
, “Discrete spectral triples and their symmetries
,” J. Math. Phys.
39
, 6191
(1998
).26.
J.
Gracia-Bondía
, J.
Várilly
, and H.
Figueroa
, Elements of Noncommutative Geometry
(Birkhäuser Advanced Texts
, 2001
).27.
J.
Kaad
and M.
Lesch
, “A local global principle for regular operators in Hilbert-modules
,” J. Funct. Anal.
262
, 4540
–4569
(2012
).28.
29.
S.
Lazzarini
and T.
Schücker
, “A farewell to unimodularity
,” Phys. Lett. B.
510
, 277
–284
(2001
).30.
A.
Connes
, “Noncommutative geometry and the standard model with neutrino mixing
,” J. High Energy Phys.
11
(2006
) 081
.31.
K.
van den Dungen
and W. D.
van Suijlekom
, “Electrodynamics from noncommutative geometry
,” J. Noncommut. Geom.
7
, 433
–456
(2013
).32.
I.
Raeburn
and D.
Williams
, Morita Equivalence and Continuous-Trace C*-Algebras
, Mathematical Surveys and Monographs
(American Mathematical Society
, 1998
).33.
C.
Schochet
, “The Dixmier-Douady invariant for dummies
,” Not. Am. Math. Soc.
56
, 809
–816
(2009
), url: http://www.ams.org/notices/200907/rtx090700809p.pdf.34.
A. H.
Chamseddine
and A.
Connes
, “Resilience of the spectral standard model
,” J. High Energy Phys.
09
(2012
) 104
.© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.