The inverse scattering transform (IST) as a tool to solve the initial-value problem for the focusing nonlinear Schrödinger (NLS) equation with non-zero boundary values

$q_{l/r}(t)\equiv A_{l/r} e^{-2iA_{l/r}^2t+i\theta _{l/r}}$
ql/r(t)Al/re2iAl/r2t+iθl/r as x → ∓∞ is presented in the fully asymmetric case for both asymptotic amplitudes and phases, i.e., with AlAr and θl ≠ θr. The direct problem is shown to be well-defined for NLS solutions q(x, t) such that
$\left(q(x,t)-q_{l/r}(t)\right)\in L^{1,1}(\mathbb {R^\mp })$
q(x,t)ql/r(t)L1,1(R)
with respect to x for all t ⩾ 0, and the corresponding analyticity properties of eigenfunctions and scattering data are established. The inverse scattering problem is formulated both via (left and right) Marchenko integral equations, and as a Riemann-Hilbert problem on a single sheet of the scattering variables
$\lambda _{l/r}=\sqrt{k^2+A^2_{l/r}}$
λl/r=k2+Al/r2
, where k is the usual complex scattering parameter in the IST. The time evolution of the scattering coefficients is then derived, showing that, unlike the case of solutions with equal amplitudes as x → ±∞, here both reflection and transmission coefficients have a nontrivial (although explicit) time dependence. The results presented in this paper will be instrumental for the investigation of the long-time asymptotic behavior of fairly general NLS solutions with nontrivial boundary conditions via the nonlinear steepest descent method on the Riemann-Hilbert problem, or via matched asymptotic expansions on the Marchenko integral equations.

1.
M. J.
Ablowitz
and
D. E.
Baldwin
, “
Dispersive shock wave interactions and asymptotics
,”
Phys. Rev. E
87
(
2
),
022906
(
2013
).
2.
M. J.
Ablowitz
,
D. J.
Kaup
,
A. C.
Newell
, and
H.
Segur
, “
The Inverse scattering transform. Fourier analysis for nonlinear problems
,”
Stud. Appl. Math.
53
,
249
315
(
1974
).
3.
M. J.
Ablowitz
,
B.
Prinari
, and
A. D.
Trubatch
,
Discrete and Continuous Nonlinear Schrödinger Systems
,
London Mathematical Society Lecture Notes Series
Vol.
302
(
Cambridge University Press
,
Cambridge
,
2004
).
4.
M. J.
Ablowitz
and
H.
Segur
,
Solitons and the Inverse Scattering Transform
(
SIAM
,
Philadelphia
,
1981
).
5.
M. J.
Ablowitz
and
H.
Segur
, “
Asymptotic solutions of the Korteweg-de Vries equation
,”
Stud. App. Math.
57
,
13
44
(
1977
).
6.
N. N.
Akhmediev
,
V. M.
Eleonskii
, and
N. E.
Kulagin
, “
Generation of a periodic sequence of picosecond pulses in an optical fiber. Exact solutions
,”
Sov. Phys. JETP
89
,
1542
1551
(
1985
) [in Russian].
7.
N. N.
Akhmediev
,
A.
Ankiewicz
, and
M.
Taki
, “
Waves that appear from nowhere and disappear without a trace
,”
Phys. Lett. A
373
,
675
678
(
2009
).
8.
N. N.
Akhmediev
,
A.
Ankiewicz
, and
J. M.
Soto-Crespo
, “
Rogue waves and rational solutions of the nonlinear Schrödinger equation
,”
Phys. Rev. E
80
,
026601
(
2009
).
9.
N. N.
Akhmediev
and
V. I.
Korneev
, “
Modulational instability and periodic solutions of the nonlinear Schrödinger equation
,”
Theor. Math. Phys.
69
,
1089
1093
(
1986
).
10.
T. B.
Benjamin
, “
Instability of periodic wavetrains in nonlinear dispersive systems
,”
Proc. Roy. Soc. A
299
,
59
75
(
1967
).
11.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wavetrains in deep water. Part I
,”
J. Fluid Mech.
27
,
417
430
(
1967
).
12.
G.
Biondini
and
G.
Kovačić
, “
Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions
,”
J. Math. Phys.
55
,
031506
(
2014
).
13.
A.
Boutet de Monvel
,
V. P.
Kotlyarov
, and
D.
Shepelsky
, “
Focusing NLS equation: Long-time dynamics of step-like initial data
,”
Int. Math. Res. Notices
7
,
1613
1653
(
2011
).
14.
R.
Buckingham
and
S.
Venakides
, “
Long-time asymptotics of the nonlinear Schrödinger equation shock problem
,”
Commun. Pure App. Math.
60
,
1349
1414
(
2007
).
15.
F.
Calogero
and
A.
Degasperis
,
Spectral Transforms and Solitons
(
North-Holland
,
Amsterdam
,
1982
).
16.
M.
Chen
,
M. A.
Tsankov
,
J. M.
Nash
, and
C. E.
Patton
, “
Backward-volume-wave microwave-envelope solitons in yttrium iron garnet films
,”
Phys. Rev. B
49
,
12773
12790
(
1994
).
17.
P.
Deift
and
X.
Zhou
, “
A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation
,”
Ann. Math.
137
,
295
368
(
1993
).
18.
F.
Demontis
,
B.
Prinari
,
C.
van der Mee
, and
F.
Vitale
, “
The inverse scattering transform for the defocusing nonlinear Schrödinger equation with nonzero boundary conditions
,”
Stud. Appl. Math.
131
,
1
40
(
2013
).
19.
L. D.
Faddeev
and
L. A.
Takhtajan
,
Hamiltonian Methods in the Theory of Solitons
(
Springer
,
Berlin
,
1987
).
20.
J.
Garnier
and
K.
Kalimeris
, “
Inverse scattering perturbation theory for the nonlinear Schrödinger equation with non-vanishing background
,”
J. Phys. A: Math. Theor.
45
,
035202
(13pp.) (
2012
).
21.
A.
Hasegawa
, and
F.
Tappert
, “
Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion and II. Normal dispersion
,”
Appl. Phys. Lett.
23
(
3
),
142
144
and
171
(
1973
).
22.
A. R.
Its
,
A. V.
Rybin
, and
M. A.
Sall
, “
Exact integration of nonlinear Schrödinger equation
,”
Theor. Math. Phys.
74
,
20
32
(
1988
).
23.
E. A.
Kuznetsov
, “
Solitons in a parametrically unstable plasma
,”
Sov. Phys. Dokl. (Engl. Transl.)
22
,
507
508
(
1977
).
24.
Y.-C.
Ma
, “
The perturbed plane-wave solutions of the cubic Schrödinger equation
,”
Stud. Appl. Math.
60
,
43
58
(
1979
).
25.
D.
Mihalache
,
F.
Lederer
, and
D-M
Baboiu
, “
Two-parameter family of exact solutions of the nonlinear Schrödinger equation describing optical soliton propagation
,”
Phys. Rev. A
47
,
3285
3290
(
1993
).
26.
S. P.
Novikov
,
S. V.
Manakov
,
L. B.
Pitaevskii
, and
V. E.
Zakharov
,
Theory of Solitons. The Inverse Scattering Method
(
Plenum Press
,
New York
,
1984
).
27.
Y.
Ohta
and
J.
Yang
, “
General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation
,”
Proc. Roy. Soc. A
468
,
1716
1740
(
2012
).
28.
M.
Onorato
,
A. R.
Osborne
, and
M.
Serio
, “
Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves
,”
Phys. Rev. Lett.
96
,
014503
(
2006
).
29.
C. J.
Pethick
and
H.
Smith
,
Bose-Einstein Condensation in Dilute Gases
(
Cambridge University Press
,
Cambridge
,
2002
).
30.
D. H.
Peregrine
, “
Water waves, nonlinear Schrödinger equations and their solutions
,”
J. Aust. Math. Soc. Ser. B
25
,
16
43
(
1983
).
31.
D. R.
Solli
,
C.
Ropers
,
P.
Koonath
, and
B.
Jalali
, “
Optical rogue waves
,”
Nature (London)
450
,
1054
1057
(
2007
).
32.
M.
Tajiri
and
Y.
Watanabe
, “
Breather solutions to the focusing nonlinear Schrödinger equation
,”
Phys. Rev. E
57
,
3510
3519
(
1998
).
33.
V. E.
Zakharov
, “
Hamilton formalism for hydrodynamic plasma models
,”
Sov Phys. JETP
33
,
927
932
(
1971
).
34.
V. E.
Zakharov
and
A. A.
Gelash
, “
Soliton on unstable condensate
,” preprint arXiv:1109.0620 [nlin.si] (
2011
).
35.
V. E.
Zakharov
and
A. A.
Gelash
, “
Nonlinear stage of modulational instability
,”
Phys. Rev. Lett.
111
,
054101
(
2013
).
36.
V. E.
Zakharov
and
L. A.
Ostrovsky
, “
Modulation instability: The beginning
,”
Phys. D
238
,
540
548
(
2009
).
37.
V. E.
Zakharov
and
A. B.
Shabat
, “
Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media
,”
Sov. Phys. JETP
34
,
62
69
(
1972
).
38.
A. K.
Zvezdin
and
A. F.
Popkov
, “
Contribution to the nonlinear theory of magnetostatic spin waves
,”
Sov. Phys. JETP
57
,
350
355
(
1983
).
You do not currently have access to this content.