We study Killing tensors in the context of warped products and apply the results to the problem of orthogonal separation of the Hamilton-Jacobi equation. This work is motivated primarily by the case of spaces of constant curvature where warped products are abundant. We first characterize Killing tensors which have a natural algebraic decomposition in warped products. We then apply this result to show how one can obtain the Killing-Stäckel space (KS-space) for separable coordinate systems decomposable in warped products. This result in combination with Benenti's theory for constructing the KS-space of certain special separable coordinates can be used to obtain the KS-space for all orthogonal separable coordinates found by Kalnins and Miller in Riemannian spaces of constant curvature. Next we characterize when a natural Hamiltonian is separable in coordinates decomposable in a warped product by showing that the conditions originally given by Benenti can be reduced. Finally, we use this characterization and concircular tensors (a special type of torsionless conformal Killing tensor) to develop a general algorithm to determine when a natural Hamiltonian is separable in a special class of separable coordinates which include all orthogonal separable coordinates in spaces of constant curvature.

1.
L. P.
Eisenhart
, “
Separable systems of Stackel
,”
Ann. Math.
35
,
284
(
1934
).
2.
S.
Benenti
, “
Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,”
J. Math. Phys.
38
,
6578
(
1997
).
3.
M.
Meumertzheim
,
H.
Reckziegel
, and
M.
Schaaf
, “
Decomposition of twisted and warped product nets
,”
Results. Math.
36
,
297
312
(
1999
).
4.
E. G.
Kalnins
and
W.
Miller
, “
Separation of variables on n-dimensional Riemannian manifolds. I. The n-sphere Sn and Euclidean n-space Rn
,”
J. Math. Phys.
27
,
1721
1736
(
1986
).
5.
E. G.
Kalnins
,
Separation of variables for Riemannian spaces of constant curvature
, 1st ed. (
Longman Scientific & Technical
,
1986
).
6.
S.
Benenti
, “
Separability in Riemannian manifolds
,” University of Turin, accessed online www2.dm.unito.it/~benenti/CP/75.pdf.
7.
S.
Benenti
, “
Inertia tensors and Stackel systems in the Euclidean spaces
,”
Rend. Semin. Mat., Univ. Politec. Torino
50
,
315
341
(
1992
).
8.
S.
Benenti
, “
Orthogonal separable dynamical systems
,” in
Proceedings of the Conference on Differential Geometry and Its Applications
, Opava, 1992 (
Silesian University
,
Opava
,
1993
), Vol.
I
, pp.
163
184
.
9.
S.
Benenti
, “
Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems
,”
Acta Appl. Math.
87
,
33
91
(
2005
).
10.
M.
Crampin
, “
Conformal Killing tensors with vanishing torsion and the separation of variables in the Hamilton-Jacobi equation
,”
Differ. Geom. Appl.
18
,
87
102
(
2003
).
11.
M.
Crampin
, “
Concircular vector fields and special conformal Killing tensors
,” in
Differential Geometric Methods in Mechanics and Field Theory
(
Academia Press
,
Gent
,
2007
), pp.
57
70
.
12.
S.
Nolker
, “
Isometric immersions of warped products
,”
Differ. Geom. Appl.
6
,
1
30
(
1996
).
13.
C.
Waksjo
and
S.
Wojciechowski
, “
How to find separation coordinates for the Hamilton-Jacobi equation: A criterion of separability for natural Hamiltonian systems
,”
Math. Phys. Anal. Geom.
6
,
301
348
(
2003
).
14.
To be precise, we always assume these tensors (their associated endomorphisms) are point-wise diagonalizable.
15.
B.
Coll
,
J. J.
Ferrando
, and
J. A.
Saez
, “
On the geometry of Killing and conformal tensors
,”
J. Math. Phys.
47
,
062503
(
2006
).
16.
H.
Reckziegel
and
M.
Schaaf
, “
De Rham decomposition of netted manifolds
,”
Results Math.
35
,
175
191
(
1999
) (German).
17.
B.
O'Neil
,
Semi-Riemannian Geometry: With Applications to Relativity
, 3rd ed.,
Pure and Applied Mathematics Series
Vol.
103
(
Academic Press
,
1983
), p.
468
.
18.
Note that some authors use the name auto-parallel instead.3 
19.
A.
Zeghib
, “
Geometry of warped products
,” preprint arXiv:1107.0411 (
2011
).
20.
Note that the Schouten bracket for symmetric tensors is directly related to the Poisson bracket on the cotangent bundle.21,22
21.
N. M. J.
Woodhouse
, “
Killing tensors and the separation of the Hamilton-Jacobi equation
,”
Commun. Math. Phys.
44
,
9
38
(
1975
).
22.
A.
Nijenhuis
, “
Jacobi-type identities for bilinear differential concomitants of certain tensor fields I
,”
Indagat. Math.
17
,
390
397
(
1955
).
23.
A normal vector field is a non-zero vector field whose orthogonal distribution is Frobenius integrable.
24.
T.
Levi-Civita
, “
Sulla integrazione della equazione di Hamilton-Jacobi per separazione di variabili
,”
Math. Ann.
59
,
383
397
(
1904
).
25.
We should mention that our definition of an orthogonal web is dual to the one used in Benenti,2 which defines an orthogonal web as n pair-wise orthogonal co-dimension one non-degenerate foliations.
26.
L. P.
Eisenhart
, “
Dynamical trajectories and geodesics
,”
Ann. Math.
30
,
591
606
(
1928
).
27.
W.
Jelonek
, “
Killing tensors and warped product
,”
Ann. Polonici Math.
75
,
15
33
(
2000
), https://eudml.org/doc/208380.
28.
J. T.
Horwood
,
R. G.
McLenaghan
, and
R. G.
Smirnov
, “
Hamilton-Jacobi theory in three-dimensional Minkowski space via Cartan geometry
,”
J. Math. Phys.
50
,
053507
(
2009
).
29.
V. S.
Gerdjikov
,
G.
Vilasi
, and
A. B.
Yanovski
, “
Vector-valued differential forms
,” in
Integrable Hamiltonian Hierarchies
,
Lecture Notes in Physics
Vol.
748
, edited by
V. S.
Gerdjikov
,
G.
Vilasi
, and
A. B.
Yanovski
(
Springer
,
Berlin/Heidelberg
,
2008
), pp.
459
471
.
30.
G.
Thompson
,
M.
Crampin
, and
W.
Sarlet
, “
Structural equations for a special class of conformal Killing tensors
,” University of Ghent, https://157.193.53.8/zwc/geomech/tm/2005/scktensors.pdf.
31.
By a non-trivial concircular tensor, we mean one which is not a multiple of the metric when n > 1.
32.
By homothetic pseudo-Riemannian manifolds, we mean conformal pseudo-Riemannian manifolds where the conformal factor is a positive constant.
33.
F.
Calogero
, “
Solution of a three-body problem in one dimension
,”
J. Math. Phys.
10
,
2191
2196
(
1969
).
34.
A.
Bolsinov
and
V. S.
Matveev
, “
Geometrical interpretation of Benenti systems
,”
J. Geom. Phys.
44
,
489
506
(
2003
).
35.
H.
Lundmark
, “
Higher-dimensional integrable Newton systems with quadratic integrals of motion
,”
Stud. Appl. Math.
110
,
257
296
(
2003
).
36.
M.
Crampin
and
W.
Sarlet
, “
A class of nonconservative Lagrangian systems on Riemannian manifolds
,”
J. Math. Phys.
42
,
4313
4326
(
2001
).
37.
L.
Degiovanni
and
G.
Rastelli
, “
Complex variables for separation of the Hamilton-Jacobi equation on real pseudo-Riemannian manifolds
,”
J. Math. Phys.
48
,
073519
(
2007
).
38.
A.
Bolsinov
and
V. S.
Matveev
, “
Local normal forms for geodesically equivalent pseudo-Riemannian metrics
,” preprint arXiv:1301.2492 (
2013
).
39.
S.
Benenti
, “
Orthogonal separation of variables on manifolds with constant curvature
,”
Differ. Geom. Appl.
2
,
351
367
(
1992
).
You do not currently have access to this content.