In the present paper, we build a combinatorial invariant, called the “spectral monodromy” from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc [“Quantum monodromy in integrable systems,” Commun. Math. Phys.203(2), 465479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat [“On global action-angle coordinates,” Commun. Pure Appl. Math.33(6), 687706 (1980)].

1.
M. K.
Ali
, “
The quantum normal form and its equivalents
,”
J. Math. Phys.
26
(
10
),
2565
2572
(
1985
).
2.
V. I.
Arnold
, “
Characteristic class entering into quantization conditions
,”
Funkc. Anal. Priloz.
1
,
1
13
(
1967
).
3.
M.
Audin
,
Les systemes hamiltoniens et leur integrabilite
, Cours Specialisés [Specialized Courses] (
Société Mathématique de France
,
Paris
,
2001
), Vol.
8
.
4.
D.
Bambusi
,
S.
Graffi
, and
T.
Paul
, “
Normal forms and quantization formula
,”
Commun. Math. Phys.
207
(
1
),
173
195
(
1999
).
5.
J.
Blank
,
P.
Exner
, and
M.
Havlíček
,
Hilbert Space Operators in Quantum Physics
, 2nd ed., Theoretical and Mathematical Physics (
Springer
,
New York
,
2008
).
6.
J.-B.
Bost
, “
Tores invariants des systèmes dynamiques Hamiltoniens (d'après Kolmogorov, Arnold, Moser, Russmann, Zehnder, Herman, Poschel, : : :)
,”
Asterisque
133-134
,
113
157
(
1986
), Seminar Bourbaki, 1984/1985, http://eudml.org/doc/110039.
7.
H. W.
Broer
and
G. B.
Huitema
, “
A proof of the isoenergetic KAM-theorem from the “ordinary” one
,”
J. Differ. Equations
90
(
1
),
52
60
(
1991
).
8.
H.
Boer
, “
Do Diophantine vectors form a Cantor bouquet?
,”
J. Differ. Equations Appl.
16
(
5–6
),
433
434
(
2010
).
9.
H.
Broer
,
R.
Cushman
,
F.
Fassò
, and
F.
Takens
, “
Geometry of KAM tori for nearly integrable Hamiltonian systems
,”
Ergod. Theory Dyn. Syst.
27
(
3
),
725
741
(
2007
).
10.
D.
Burns
and
R.
Hind
, “
Symplectic geometry and the uniqueness of Grauert tubes
,”
Geom. Funct. Anal.
11
(
1
),
1
10
(
2001
).
11.
S. E.
Cappell
,
R.
Lee
, and
E. Y.
Mimmer
, “
On the Maslov index
,”
Commun. Pure Appl. Math.
47
(
2
),
121
186
(
1994
).
12.
A.-M.
Charbonnel
, “
Comportement semi-classique du spectre conjoint d'opérateurs pseudodifférentiels qui commutent
,”
Asymptotic Anal.
1
(
3
),
227
261
(
1988
).
13.
L.
Charles
and
S.
Vũ Ngọc
, “
Spectral asymptotics via the semiclassical Birkhoff normal form
,”
Duke Math. J.
143
(
3
),
463
511
(
2008
).
14.
R. H.
Cushman
and
L. M.
Bates
,
Global Aspects of Classical Integrable Systems
(
Birkhuser Verlag
,
Basel
,
1997
).
15.
E. B.
Davies
,
Spectral Theory and Differential Operators
,
Cambridge Studies in Advanced Mathematics
Vol.
42
(
Cambridge University Press
,
Cambridge
,
1995
).
16.
A.
Delshams
and
P.
Gutiérrez
, “
Effective stability and KAM theory
,”
J. Differ. Equations
128
(
2
),
415
490
(
1996
).
17.
M.
Dimassi
and
J.
Sjöstrand
,
Spectral Asymptotics in the Semi-Classical Limit
,
London Mathematical Society Lecture Note Series
Vol.
268
(
Cambridge University Press
,
Cambridge
,
1999
).
18.
J. J.
Duitermaat
, “
On global action-angle coordinates
,”
Commun. Pure Appl. Math.
33
(
6
),
687
706
(
1980
).
19.
B.
Eckhardt
, “
Birkhoff-Gustavson normal form in classical and quantum mechanics
,”
J. Phys. A
19
(
15
),
2961
2972
(
1986
).
20.
J. V.
Egorov
, “
The canonical transformations of pseudodifferential operators
,”
Usp. Mat. Nauk
24
(
5
),
235
236
(
1969
), http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=5554&option_lang=eng.
21.
B.
Fedosov
,
Deformation Quantization and Index Theory
,
Mathematical Topics
Vol.
9
(
Akademie Verlag
,
Berlin
,
1996
).
22.
M.
Hitrik
,
Lagrangian Tori and Spectra for Non-Selfadjoint Operators
, Séminaire: Équations aux Dérivées Partielles. 2005–2006 Based on joint works with J. Sjöstrand and S. Vu Ngọc, p. Exp. No. XXIV, 16.
23.
M.
Hitrik
and
J.
Sjöstrand
, “
Non-selfadjoint perturbations of selfadjoint operators in 2 dimensions. I
,”
Ann. Henri Poincare
5
(
1
),
1
73
(
2004
).
24.
M.
Hitrik
and
J.
Sjöstrand
, “
Nonselfadjoint perturbations of selfadjoint operators in two dimensions. II. Vanishing averages
,”
Commun. Partial Differ. Equ.
30
(
7–9
),
1065
1106
(
2005
).
25.
M.
Hitrik
and
J.
Sjöstrand
, “
Non-selfadjoint perturbations of selfadjoint operators in two dimensions. IIIa. One branching point
,”
Can. J. Math.
60
(
3
),
572
657
(
2008
).
26.
M.
Hitrik
and
J.
Sjöstrand
, “
Diophantine tori and Weyl laws for non-selfadjoint operators in dimension two
,”
Commun. Math. Phys.
314
(
2
),
373
417
(
2012
).
27.
M.
Hitrik
,
J.
Sjöstrand
, and
S.
Vũ Ngọc
, “
Diophantine tori and spectral asymptotics for nonselfadjoint operators
,”
Am. J. Math.
129
(
1
),
105
182
(
2007
).
28.
H.
Hoffer
and
E.
Zehnder
,
Symplectic Invariants and Hamiltonian Dynamics
,
The Floer Memorial Volume, Progress in Mathematics
Vol.
133
(
Birkhuser
,
Basel
,
1995
), pp.
525
544
.
29.
L.
Hörmander
,
The Analysis of Linear Partial Differential Operators. I-IV
,
Classics in Mathematics
(
Springer-Verlag
,
Berlin
,
1983
); Fourier Integral Operators.
30.
S.-J.
Kan
, “
Erratum to the paper: On rigidity of Grauert tubes over homogeneous Riemannian manifolds [J. Reine Angew. Math. 577 (2004), 213–233; mr2108219]
,”
J. Reine Angew. Math.
596
,
235
(
2006
).
31.
T.
Kato
,
Perturbation Theory for Linear Operators
,
Classics in Mathematics
(
Springer-Verlag
,
Berlin
,
1995
), Reprint of the 1980 edition.
32.
H.
Mineur
, “
Quelques propriétés générales des équations de la mécanique
,”
Bull. Astron. (2)
13
,
309
328
(
1948
).
33.
J. E.
Moyal
, “
Quantum mechanics as a statistical theory
,”
Proc. Cambridge Philos. Soc.
45
,
99
124
(
1949
).
34.
C. R.
De Oliveira
,
Intermediate Spectral Theory and Quantum Dynamics
,
Progress in Mathematical Physics
Vol.
54
(
Birkhuser Verlag
,
Basel
,
2009
).
35.
G.
Popov
, “
Invariant tori, effective stability, and quasimodes with exponentially small error terms. I-II. Birkhoff normal forms
,”
Ann. Henri Poincare
1
(
2
),
223
279
(
2000
).
36.
J.
Pöschel
, “
Integrability of Hamiltonian systems on Cantor sets
,”
Commun. Pure Appl. Math.
35
(
5
),
653
696
(
1982
).
37.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. IV. Analysis of Operators
(
Academic Press [Harcourt Brace Jovanovich Publishers]
,
New York
,
1978
).
38.
D.
Robert
,
Autour de lapproximation semi-classique
,
Progress in Mathematics
Vol.
68
(
Birkhuser Boston Inc.
,
Boston, MA
,
1987
).
39.
M. A.
Shubin
,
Pseudodifferential Operators and Spectral Theory
, 2nd ed. (
Springer-Verlag
,
Berlin
,
2001
), Translated from the 1978 Russian original by Stig I. Andersson.
40.
J.
Sjöstrans
, “
Asymptotic distribution of eigenfrequencies for damped wave equations
,”
Publ. Res. Inst. Math. Sci.
36
(
5
),
573
611
(
2000
).
41.
J.
Sjöstrans
,
Asymptotic Distribution of Eigenfrequencies for Damped Wave Equations
, Journées Équations aux Dérivées Partielles (La Chapelle sur Erdre, 2000) (
University of Nantes
,
Nantes
,
2000
), p. Exp. No. XVI, 8.
42.
J.
Sjöstrans
, “
Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
,”
Ann. Fac. Sci. Toulouse Math. (6)
18
(
4
),
739
795
(
2009
).
43.
Y.
Colin de Verdière
, “
Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable
,”
Math. Z.
171
(
1
),
51
73
(
1980
).
44.
Y.
Colin de Verdière
,
Méthodes semi-classiques et théorie spectrale
(
Cours de DEA
,
2006
).
45.
S.
Vũ Ngọc
, “
Quantum monodromy in integrable systems
,”
Commun. Math. Phys.
203
(
2
),
465
479
(
1999
).
46.
S.
Vũ Ngọc
,
Invariants symplectiques et semi-classiques des systémes intégrables avec singularités
, Séminaire: Équations aux Dérivées Partielles, 2000–2001, p. Exp. No. XXIV, 16.
47.
S.
Vũ Ngọc
, “
Quantum monodromy and Bohr-Sommerfeld rules
,”
Lett. Math. Phys.
55
(
3
),
205
217
(
2001
);
Topological and Geometrical Methods
(
Dijon
,
2000
).
48.
S.
Vũ Ngọc
,
Systèmes intégrables semi-classiques: du local au global, Panoramas et Synthèses
[Panoramas and Syntheses] (
Société Mathématique de France
,
Paris
,
2006
), Vol.
22
.
49.
S.
Vũ Ngọc
, “
Quantum Birkhoff normal forms and semiclassical analysis
,”
Noncommutativity and Singularities
,
Advanced Studies in Pure Mathematics
Vol.
55
(
Mathematical Society of Japan
,
Tokyo
,
2009
), pp.
99
116
.
50.
H.
Weyl
,
The Thoery of Groups and Quantum Mechanics
(
Library of Theoretical Physics
,
Dover
,
1950
), Translated from the German edition.
You do not currently have access to this content.