A quasi-Hermitian operator is an operator that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Whereas those metric operators are in general assumed to be bounded, we analyze the structure generated by unbounded metric operators in a Hilbert space. Following our previous work, we introduce several generalizations of the notion of similarity between operators. Then we explore systematically the various types of quasi-Hermitian operators, bounded or not. Finally, we discuss their application in the so-called pseudo-Hermitian quantum mechanics.

1.
J.
Dieudonné
, “
Quasi-Hermitian operators
,” in
Proceedings of the International Symposium on Linear Spaces, Jerusalem, 1960
(
Pergamon Press
,
Oxford
,
1961
), pp.
115
122
.
2.
P.
Siegl
and
D.
Krejčiřík
, “
On the metric operator for the imaginary cubic oscillator
,”
Phys. Rev. D
86
,
121702
(R) (
2012
).
3.
F.
Bagarello
, “
From self-adjoint to non-self-adjoint harmonic oscillators: Physical consequences and mathematical pitfalls
,”
Phys. Rev. A
88
,
032120
(
2013
).
4.
F.
Bagarello
and
A.
Fring
, “
Non-self-adjoint model of a two-dimensional noncommutative space with an unbounded metric
,”
Phys. Rev. A
88
,
042119
(
2013
).
5.
F.
Bagarello
and
M.
Znojil
, “
Nonlinear pseudo-bosons versus hidden Hermiticity. II. The case of unbounded operators
,”
J. Phys. A: Math. Theor.
45
,
115311
(
2012
).
6.
A.
Mostafazadeh
, “
Pseudo–Hermitian quantum mechanics with unbounded metric operators
,”
Philos. Trans. R. Soc. London
371
,
20120050
(
2013
).
7.
J.-P.
Antoine
, and
C.
Trapani
, “
Partial inner product spaces, metric operators and generalized Hermiticity
,”
J. Phys. A: Math. Theor.
46
,
025204
(
2013
);
J.-P.
Antoine
, and
C.
Trapani
, Corrigendum,
J. Phys. A: Math. Theor.
46
,
329501
(
2013
).
8.
J.-P.
Antoine
and
C.
Trapani
,
Partial Inner Product Spaces: Theory and Applications
,
Lecture Notes in Mathematics
Vol.
1986
(
Springer-Verlag
,
Berlin
,
2009
).
9.
N.
Dunford
and
J. T.
Schwartz
, 1957, 1963, 1971,
Linear Operators. Part I: General Theory; Part II: Spectral Theory; Part III: Spectral Operators
(
Interscience
,
New York
,
1957
, 1963, 1971).
10.
C. M.
Bender
, “
Making sense of non-Hermitian Hamiltonians
,”
Rep. Prog. Phys.
70
,
947
1018
(
2007
).
11.
C. M.
Bender
,
A.
Fring
,
U.
Günther
, and
H.
Jones
, “
Quantum physics with non-Hermitian operators (Preface to a special issue)
,”
J. Phys. A: Math. Theor.
45
,
440301
(
2012
).
12.
J.
Bergh
and
J.
Löfström
,
Interpolation Spaces
(
Springer-Verlag
,
Berlin
,
1976
).
13.
The space
${\mathcal {H}}(R_G^{-1})$
H(RG1)
is (three times) erroneously denoted
${\mathcal {H}}(R_{G^{-1}})$
H(RG1)
in Ref. 7, p.
4
(see Corrigendum).
14.
T. B.
Hoover
, “
Quasi-similarity of operators
,”
Ill. J. Math.
16
,
678
686
(
1972
).
15.
S.
Kantorovitz
, “
On the characterization of spectral operators
,”
Trans. Am. Math. Soc.
111
,
152
181
(
1964
).
16.
F. G.
Scholtz
,
H. B.
Geyer
, and
F. J. W.
Hahne
, “
Quasi-Hermitian operators in Quantum Mechanics and the variational principle
,”
Ann. Phys. (N.Y.)
213
,
74
101
(
1992
).
17.
H. B.
Geyer
,
W. D.
Heiss
, and
F. G.
Scholtz
, “
Non-Hermitian Hamiltonians, metric, other observables and physical implications
,” preprint arXiv:0710.5593v1 (
2007
).
18.
R.
Kretschmer
and
L.
Szymanowski
, “
Quasi-Hermiticity in infinite-dimensional Hilbert spaces
,”
Phys. Lett. A
325
,
112
117
(
2004
).
19.
A.
Mostafazadeh
, “
Pseudo-Hermitian representation of quantum mechanics
,”
Int. J. Geom. Methods Mod. Phys.
07
,
1191
1306
(
2010
).
20.
S.
Albeverio
,
U.
Günther
, and
S.
Kuzhzel
, “
J-self-adjoint operators with
$\mathcal {C}$
C
-symmetries: An extension theory approach
,”
J. Phys. A: Math. Theor.
42
,
105205
(
2009
).
21.
J.
Bognar
,
Indefinite Inner Product Spaces
(
Springer-Verlag
,
Berlin/New York
,
1974
).
22.
C. M.
Bender
and
S.
Kuzhel
, “
Unbounded
${\mathcal {C}}$
C
-symmetries and their nonuniqueness
,”
J. Phys. A: Math. Theor.
45
,
444005
(
2012
).
23.
E. B.
Davies
,
Linear Operators and Their Spectra
(
Cambridge University Press
,
Cambridge, UK
,
2007
).
24.
B.
Sz.-Nagy
and
C.
Foiaş
,
Harmonic Analysis of Operators in Hilbert Space
(
North-Holland
,
Amsterdam, and Akadémiai Kiadó, Budapest
,
1970
).
25.
L.
Tzafriri
, “
Quasi-similarity for spectral operators on Banach spaces
,”
Pac. J. Math.
25
,
197
217
(
1968
).
26.
N.
Dunford
, “
A survey of the theory of spectral operators
,”
Bull. Am. Math. Soc.
64
,
217
274
(
1958
).
27.
A. N.
Feldzamen
, “
Semi-similarity invariants for spectral operators on Hilbert space
,”
Trans. Am. Math. Soc.
100
,
277
323
(
1961
).
28.
S.
Ôta
and
K.
Schmüdgen
, “
On some classes of unbounded operators
,”
Integral Equ. Oper. Theory
12
,
211
226
(
1989
).
29.
There is a misprint in that paper, on page 2, l.-2. The correct statement is Θ[Dom(H)] ⊂ Dom(H), which indeed satisfies the relation HH.
30.
E. B.
Davies
, “
Semi-classical states for non-self-adjoint Schrödinger operators
,”
Commun. Math. Phys.
200
,
35
41
(
1999
).
31.
B. F.
Samsonov
, “
Hermitian Hamiltonian equivalent to a given non-Hermitian one: Manifestation of spectral singularity
,”
Philos. Trans. R. Soc. London
371
,
20120044
(
2013
).
32.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. I. Functional Analysis
(
Academic Press
,
New York/London
,
1972
, 1980).
33.
K.
Schmüdgen
,
Unbounded Self-Adjoint Operators on Hilbert Space
(
Springer-Verlag
,
Dordrecht/Heidelberg
,
2012
).
34.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. IV. Analysis of Operators
(
Academic Press
,
New York and London
,
1978
).
35.
J.
Weidmann
,
Linear Operators in Hilbert Spaces
(
Springer
,
New York
,
1980
).
36.
A.
Inoue
and
C.
Trapani
, “
Non-self-adjoint resolutions of the identity and associated operators
,” preprint arXiv:1312.7090v1[math FA].
37.
G. W.
Mackey
,
Commutative Banach Algebras
,
Notas de Matematica
Vol.
17
(
Instituto de Matemática Pura e Aplicada
,
Rio de Janeiro, RJ, Brasil
,
1959
).
38.
Using Dunford's result (Ref. 9, Sec. XV.6), we may conclude directly that A = T−1ST, with S self-adjoint. The rest follows by putting again T = UG1/2.
39.
C.
Burnap
and
P. F.
Zweifel
, “
A note on the spectral theorem
,”
Integral Equ. Oper. Theory
9
,
305
324
(
1986
).
40.
The author of Ref. 6 calls this a G-pseudo-Hermitian operator, but in fact it is simply a quasi-Hermitian operator, in the original sense of Dieudonné,1 but unbounded.
41.
A. O.
Barut
and
R.
Rączka
,
Theory of Group Representations and Applications
(
PWN—Polish Scientific Publishers
,
Warszawa
,
1977
).
42.
E.
Nelson
, “
Analytic vectors
,”
Ann. Math.
70
,
572
615
(
1959
).
43.
J.
Schwartz
, “
Some non-selfadjoint operators
,”
Commun. Pure Appl. Math.
13
,
609
639
(
1960
).
You do not currently have access to this content.