The standard solution to time-harmonic electromagnetic scattering problems in homogeneous layered media relies on the use of the electric field dyadic Green's function. However, for small values of the governing angular frequency ω, evaluation of the electric field using this Green's function exhibits numerical instability. In this short note, we provide an alternative approach which is immune from this low-frequency breakdown as ω → 0. Our approach is based on the generalized Debye source representation of Maxwell fields. Using this formulation, the electric and magnetic fields gracefully decouple in the static limit, a behavior similar to that of the classical Lorenz-Debye-Mie representation of Maxwell fields in spherical geometries. We derive extensions of both the generalized Deybe source and Lorenz-Debye-Mie representations to planar geometries, as well as provide equations for the solution of scattering from a perfectly conducting half-space and in layered media using a Sommerfeld-like approach. These formulas are stable as ω tends to zero, and offer alternatives to the electric field dyadic Green's function.

2.
A.
Sommerfeld
,
Ann. Phys. (Berlin)
333
,
665
(
1909
).
3.
H.
Weyl
,
Ann. Phys. (Berlin)
365
,
481
(
1919
).
4.
I. V.
Lindell
and
E.
Alanen
,
IEEE Trans. Antennas Propag.
32
,
126
(
1984
).
5.
I. V.
Lindell
and
E.
Alanen
,
IEEE Trans. Antennas Propag.
32
,
841
(
1984
).
6.
I. V.
Lindell
and
E.
Alanen
,
IEEE Trans. Antennas Propag.
32
,
1027
(
1984
).
7.
A.
Hochmann
and
Y.
Leviatan
,
IEEE Trans. Antennas Propag.
58
,
413
(
2010
).
9.
K. S.
Oh
,
D.
Kuznetsov
, and
J. E.
Schutt-Aine
,
IEEE Trans. Microw. Theory Techn.
42
,
1443
(
1994
).
10.
N.
Geng
,
A.
Sullivan
, and
L.
Carin
,
IEEE Trans. Geosci. Remote Sens.
38
,
1561
(
2000
).
11.
C. L.
Epstein
and
L.
Greengard
,
Comm. Pure Appl. Math.
63
,
413
(
2010
).
12.
C. L.
Epstein
,
L.
Greengard
, and
M.
O'Neil
,
Comm. Pure Appl. Math.
66
,
753
(
2013
).
13.
C. L.
Epstein
,
L.
Greengard
, and
M.
O'Neil
(submitted); arXiv:1308.5425/math.NA.
14.
P.
Debye
,
Ann. Phys. (Berlin)
335
,
57
(
1909
).
15.
G.
Mie
,
Ann. Phys. (Berlin)
330
,
377
(
1908
).
16.
C. J.
Bouwkamp
and
H. B. G.
Casimir
,
Physica
20
,
539
(
1954
).
17.
C. H.
Wilcox
,
J. Math. Mech.
6
,
167
(
1957
).
18.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York, NY
,
1999
).
19.
W. C.
Chew
,
Waves and Fields in Inhomogeneous Media
(
IEEE Press
,
Piscataway, NJ
,
1990
).
20.
W.
Cai
,
Computational Methods for Electromagnetic Phenomena
(
Cambridge University Press
,
New York, NY
,
2013
).
21.
K. A.
Michalski
and
J. R.
Mosig
,
IEEE Trans. Antennas Propag.
45
,
508
(
1997
).
22.
M.
O'Neil
,
L.
Greengard
, and
A.
Pataki
,
Wave Motion
51
,
1
(
2014
).
23.
D. J.
Thomson
and
J. T.
Weaver
,
J. Geophys. Res.
80
,
123
, doi: (
1975
).
24.
H.
Contopanagos
,
B.
Dembart
,
M.
Epton
,
J. J.
Ottusch
,
V.
Rokhlin
,
J. L.
Visher
, and
S. M.
Wandzura
,
IEEE Trans. Antennas Propag.
50
,
1824
(
2002
).
25.
C. L.
Epstein
,
Z.
Gimbutas
,
L.
Greengard
,
A.
Klöckner
, and
M.
O'Neil
,
IEEE Trans. Magn.
49
,
1072
(
2013
).
26.
F.
Vico
,
Z.
Gimbutas
,
L.
Greengard
, and
M.
Ferrando-Bataller
,
IEEE Trans. Antennas Propag.
61
,
1285
(
2013
).
27.
J. M.
Song
and
W. C.
Chew
,
Microwave Opt. Technol. Lett.
10
,
14
(
1995
).
28.
C.
Müller
,
Foundations of the Mathematical Theory of Electromagnetic Waves
(
Springer-Verlag
,
Berlin, Heidelberg
,
1969
).
29.
M.
Durán
,
I.
Muga
, and
J.-C.
Nédélec
,
Arch. Rational Mech. Anal.
191
,
143
(
2009
).
30.
M.
Taskinen
and
P.
Yla-Oijala
,
IEEE Trans. Antennas Propag.
54
,
58
(
2006
).
31.
Z.-G.
Qian
and
W. C.
Chew
,
IEEE Trans. Antennas Propag.
57
,
3594
(
2009
).
32.
J. V.
Bladel
,
Electromagnetic Fields
(
McGraw-Hill Book Company
,
New York, NY
,
1964
).
33.
J.-M.
Jin
,
Theory and Computation of Electromagnetic Fields
(
IEEE Press
,
Piscataway, NJ
,
2010
).
34.
K.
Cools
,
F. P.
Andriulli
,
F.
Olyslager
, and
E.
Michielssen
,
IEEE Trans. Antennas Propag.
57
,
3205
(
2009
).
35.
C. H.
Papas
,
Theory of Electromagnetic Wave Propagation
(
Dover
,
New York, NY
,
1988
).
36.
Z.
Gimbutas
and
L.
Greengard
,
J. Comput. Phys.
232
,
22
(
2013
).
37.
H.
Cheng
,
W. Y.
Crutchfield
,
Z.
Gimbutas
,
L.
Greengard
,
J. F.
Ethridge
,
J.
Huang
,
V.
Rokhlin
,
N.
Yarvin
, and
J.
Zhao
,
J. Comput. Phys.
216
,
300
(
2006
).
38.
F. W.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
, and
C. W.
Clark
,
NIST Handbook of Mathematical Functions
, 1st ed. (
Cambridge University Press
,
New York, NY,
2010
).
39.
P.
Morse
and
H.
Feshbach
,
Methods of Theoretical Physics
(
McGraw-Hill
,
New York, NY
,
1953
).
40.
L.
Greengard
and
J.
Huang
,
J. Comput. Phys.
180
,
642
(
2002
).
41.
A. J.
Devaney
and
E.
Wolf
,
J. Math. Phys.
15
,
234
(
1974
).
You do not currently have access to this content.