We study spectral asymptotics for a large class of differential operators on an open subset of

$\mathbb {R}^d$
Rd with finite volume. This class includes the Dirichlet Laplacian, the fractional Laplacian, and also fractional differential operators with non-homogeneous symbols. Based on a sharp estimate for the sum of the eigenvalues we establish the first term of the semiclassical asymptotics. This generalizes Weyl's law for the Laplace operator.

1.
F. A.
Berezin
, “
Convex functions of operators
,”
Mat. Sb. (N.S.)
88
(
130
),
268
276
(
1972
).
2.
M. Š.
Birman
and
M. Z.
Solomjak
,
Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory
,
American Mathematical Society Translations, Series 2
Vol.
114
(
American Mathematical Society
,
Providence, RI
,
1980
).
3.
R. M.
Blumenthal
and
R. K.
Getoor
, “
The asymptotic distribution of the eigenvalues for a class of Markov operators
,”
Pacific J. Math.
9
,
399
408
(
1959
).
4.
E.
Di Nezza
,
G.
Palatucci
, and
E.
Valdinoci
, “
Hitchhiker's guide to the fractional Sobolev spaces
,”
Bull. Sci. Math.
136
(
5
),
521
573
(
2012
).
5.
R. L.
Frank
and
L.
Geisinger
, “
Refined semiclassical asymptotics for fractional powers of the Laplace operator
,” J. Reine Angew. Math. (to be published); preprint arXiv:1105:5181.
6.
R. L.
Frank
and
L.
Geisinger
,
Two-Term Spectral Asymptotics for the Dirichlet Laplacian on a Bounded Domain
,
Mathematical Results in Quantum Physics
(
World Scientific Publishing
,
Hackensack, NJ
,
2011
), pp.
138
147
.
7.
R. L.
Frank
, “
Remarks on eigenvalue estimates and semigroup domination
,”
Spectral and Scattering Theory for Quantum Magnetic Systems
,
Contemporary Mathematics
Vol.
500
(
American Mathematical Society
,
Providence, RI
,
2009
), pp.
63
86
.
8.
L.
Geisinger
,
A.
Laptev
, and
T.
Weidl
, “
Geometrical versions of improved Berezin-Li-Yau inequalities
,”
J. Spectr. Theory
1
(
1
),
87
109
(
2011
).
9.
A. N.
Hatzinikitas
, “
Spectral properties of the Dirichlet operator
$\sum _{i=1}^d (-\partial _i^2)^s$
i=1d(i2)s
on domains in d-dimensional Euclidean space
,”
J. Math Phys.
54
,
103501
(
2013
).
10.
L.
Hörmander
,
The Analysis of Linear Partial Differential Operators
(
Springer-Verlag
,
Berlin
,
1985
), Vol.
4
.
11.
V. Ja.
Ivrii
,
Microlocal Analysis and Precise Spectral Asymptotics
,
Springer Monographs in Mathematics
(
Springer-Verlag
,
Berlin
,
1998
).
12.
J.
Korevaar
, “
Tauberian theory
,”
Grundlehren der Mathematischen Wissenschaften
,
Fundamental Principles of Mathematical Sciences
Vol.
329
(
Springer-Verlag
,
Berlin
,
2004
).
13.
H.
Kovařík
,
S.
Vugalter
, and
T.
Weidl
, “
Two dimensional Berezin-Li-Yau inequalities with a correction term
,”
Commun. Math. Phys.
287
(
3
),
959
981
(
2009
).
14.
A.
Laptev
, “
Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces
,”
J. Funct. Anal.
151
(
2
),
531
545
(
1997
).
15.
P.
Li
and
S. T.
Yau
, “
On the Schrödinger equation and the eigenvalue problem
,”
Commun. Math. Phys.
88
(
3
),
309
318
(
1983
).
16.
E. H.
Lieb
, “
The classical limit of quantum spin systems
,”
Commun. Math. Phys.
31
,
327
340
(
1973
).
17.
E. H.
Lieb
and
M.
Loss
,
Analysis
, 2nd ed.,
Graduate Studies in Mathematics
Vol.
14
(
American Mathematical Society
,
Providence, RI
,
2001
).
18.
A. D.
Melas
, “
A lower bound for sums of eigenvalues of the Laplacian
,”
Proc. Am. Math. Soc.
131
(
2
),
631
636
(
2003
) (electronic).
19.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics IV. Analysis of Operators
(
Academic Press
,
1978
).
20.
Y.
Safarov
and
D.
Vassiliev
,
The Asymptotic Distribution of Eigenvalues of Partial Differential Operators
,
Translations of Mathematical Monographs
Vol.
155
(
American Mathematical Society
,
Providence, RI
,
1997
).
21.
T.
Weidl
, “
Improved Berezin-Li-Yau inequalities with a remainder term
,”
Am. Math. Soc. Transl.
225
(
2
),
253
263
(
2008
).
22.
H.
Weyl
, “
Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)
,”
Math. Ann.
71
(
4
),
441
479
(
1912
).
23.
S.
Yildirim Yolcu
and
T.
Yolcu
, “
Bounds for the eigenvalues of the fractional Laplacian
,”
Rev. Math. Phys.
24
(
3
),
1250003
(
2012
).
24.
S.
Yildirim Yolcu
and
T.
Yolcu
, “
Estimates for the sums of eigenvalues of the fractional Laplacian on a bounded domain
,”
Commun. Contemp. Math.
15
(
3
),
1250048
(
2013
).
25.
T.
Yolcu
, “
Refined bounds for the eigenvalues of the Klein-Gordon operator
,”
Proc. Am. Math. Soc.
141
(
12
),
4305
4315
(
2013
).
You do not currently have access to this content.