In this paper, we show that affine extensions of non-crystallographic Coxeter groups can be derived via Coxeter-Dynkin diagram foldings and projections of affine extended versions of the root systems E8, D6, and A4. We show that the induced affine extensions of the non-crystallographic groups H4, H3, and H2 correspond to a distinguished subset of those considered in [P.-P. Dechant, C. Bœhm, and R. Twarock, J. Phys. A: Math. Theor.45, 285202 (2012)]. This class of extensions was motivated by physical applications in icosahedral systems in biology (viruses), physics (quasicrystals), and chemistry (fullerenes). By connecting these here to extensions of E8, D6, and A4, we place them into the broader context of crystallographic lattices such as E8, suggesting their potential for applications in high energy physics, integrable systems, and modular form theory. By inverting the projection, we make the case for admitting different number fields in the Cartan matrix, which could open up enticing possibilities in hyperbolic geometry and rational conformal field theory.

1.
P.-P.
Dechant
,
C.
Bœhm
, and
R.
Twarock
,
J. Phys. A: Math. Theor.
45
,
285202
(
2012
); e-print arXiv:1110.5219.
2.
J.
Fuchs
and
C.
Schweigert
,
Symmetries, Lie Algebras and Representations
(
Cambridge University Press
,
Cambridge
,
2003
).
3.
H. S. M.
Coxeter
,
Ann. Math.
35
,
588
(
1934
).
4.
H. S. M.
Coxeter
,
J. Lond. Math. Soc.
s1-10
,
21
(
1935
).
5.
P. G.
Stockley
and
R.
Twarock
,
Emerging Topics in Physical Virology
(
Imperial College Press
,
2010
).
6.
D. L. D.
Caspar
and
A.
Klug
,
Cold Spring Harb Symp. Quant. Biol.
27
,
1
(
1962
).
7.
R.
Twarock
,
Philos. Trans. R. Soc. London
364
,
3357
3373
(
2006
).
8.
A.
Janner
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
62
,
319
(
2006
).
9.
R.
Zandi
,
D.
Reguera
,
R. F.
Bruinsma
,
W. M.
Gelbart
, and
J.
Rudnick
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
15556
(
2004
).
10.
H.
Kroto
,
J. R.
Heath
,
S. C.
O'Brien
,
R. F.
Curl
, and
R. E.
Smalley
,
Nature (London)
318
,
162
(
1985
).
11.
H.
Kroto
,
Nature (London)
359
,
670
(
1992
).
12.
13.
E. F.
Kustov
,
V. I.
Nefedov
,
A. V.
Kalinin
, and
G. S.
Chernova
,
Russ. J. Inorg. Chem.
53
,
1384
(
2008
).
14.
A.
Katz
,
Some Local Properties of the 3-Dimensional Penrose Tilings: An Introduction to the Mathematics of Quasicrystals
(
Academic Press
,
1989
).
15.
M.
Senechal
,
Quasicrystals and Geometry
(
Cambridge University Press
,
1996
).
16.
R. V.
Moody
and
J.
Patera
,
J. Phys. A
26
,
2829
(
1993
).
17.
L.
Levitov
and
J.
Rhyner
,
J. Phys. (France)
49
,
1835
(
1988
).
18.
V. G.
Kac
,
Infinite-Dimensional Lie Algebras
(
Cambridge University Press
,
1994
), Vol.
44
.
19.
J. E.
Humphreys
,
Reflection Groups and Coxeter Groups
(
Cambridge University Press
,
Cambridge
,
1990
).
20.
J.
Patera
and
R.
Twarock
,
J. Phys. A
35
,
1551
(
2002
).
21.
J. H.
Conway
,
N. J. A.
Sloane
, and
E.
Bannai
,
Sphere-Packings, Lattices, and Groups
(
Springer-Verlag
,
New York, NY, USA
,
1987
).
22.
S.
Torquato
and
Y.
Jiao
,
Nature (London)
460
,
876
(
2009
); e-print arXiv:0908.4107.
23.
T.
Keef
,
P.-P.
Dechant
, and
R.
Twarock
, “
Packings of polyhedra with non-crystallographic symmetry
,” (unpublished).
24.
D. J.
Gross
,
J. A.
Harvey
,
E. J.
Martinec
, and
R.
Rohm
,
Nucl. Phys. B
256
,
253
(
1985
).
25.
P.
Hořava
and
E.
Witten
,
Nucl. Phys. B
475
,
94
(
1996
); e-print arXiv:hep-th/9603142.
27.
P.
Hořava
and
E.
Witten
,
Nucl. Phys. B
460
,
506
(
1996
); e-print arXiv:hep-th/9510209.
28.
R. W.
Gebert
and
H.
Nicolai
, e-print arXiv:hep-th/9411188.
29.
T.
Damour
,
M.
Henneaux
, and
H.
Nicolai
,
Phys. Rev. Lett.
89
,
221601
(
2002
); e-print arXiv:hep-th/0207267.
30.
T.
Damour
,
M.
Henneaux
, and
H.
Nicolai
,
Class. Quantum Grav.
20
,
R145
(
2003
); e-print arXiv:hep-th/0212256.
31.
M.
Henneaux
,
D.
Persson
, and
P.
Spindel
,
Living Rev. Relativ.
11
,
1
(
2008
); e-print arXiv:0710.1818.
32.
M.
Henneaux
,
D.
Persson
, and
D. H.
Wesley
,
J. High Energy Phys.
2008
,
052
.
33.
H.
Georgi
and
S. L.
Glashow
,
Phys. Rev. Lett.
32
,
438
(
1974
).
34.
I.
Bars
and
M.
Günaydin
,
Phys. Rev. Lett.
45
,
859
(
1980
).
35.
J. J.
Heckman
,
A.
Tavanfar
, and
C.
Vafa
,
J. High Energy Phys.
8
(
2010
)
40
; e-print arXiv:0906.0581.
36.
H. S. M.
Coxeter
,
Regular Polytopes
,
Dover Books on Advanced Mathematics
(
Dover Publications
,
1973
).
37.
O. P.
Shcherbak
,
Russ. Math. Surveys
43
,
149
(
1988
).
38.
M.
Koca
,
N. O.
Koca
, and
R.
Koç
,
Turk. J. Phys.
22
,
421
(
1998
), http://adsabs.harvard.edu/abs/1998TJPh...22..421K.
39.
M.
Koca
,
R.
Koc
, and
M.
Al-Barwani
,
J. Phys. A
34
,
11201
(
2001
).
40.
N.
Bourbaki
,
Groupes et algèbres de Lie
(
Masson
,
Paris
,
1981
), Chaps. 4, 5, and 6.
42.
P.-P.
Dechant
,
Adv. Appl. Clifford Algebras
23
,
301
(
2013
); e-print arXiv:1205.1451.
43.
P.-P.
Dechant
, “
Platonic solids generate their four-dimensional analogues
,”
Acta Cryst. A
69
(
2013
).
44.
J. C.
Baez
,
Bull. Am. Math. Soc.
39
,
145
(
2002
).
45.
J.
McCammond
and
T. K.
Petersen
, “
Bounding reflection length in an affine Coxeter group’
,”
J. Algebraic Comb.
34
(
4
),
711
719
(
2011
).
46.
R. E.
Behrend
,
P. A.
Pearce
,
V. B.
Petkova
, and
J.-B.
Zuber
,
Nucl. Phys. B
570
,
525
(
2000
).
47.
R. E.
Behrend
,
P. A.
Pearce
,
V. B.
Petkova
, and
J.-B.
Zuber
,
Phys. Lett. B
444
,
163
(
1998
).
You do not currently have access to this content.