We consider a system with symmetries whose configuration space is a compact Lie group, acted upon by inner automorphisms. The classical reduced phase space of this system decomposes into connected components of orbit type subsets. To investigate hypothetical quantum effects of this decomposition one has to construct the associated costratification of the Hilbert space of the quantum system in the sense of Huebschmann. In the present paper, instead of the decomposition by orbit types, we consider the related decomposition by reflection types (conjugacy classes of reflection subgroups). These two decompositions turn out to coincide, e.g., for the classical groups SU(n) and Sp(n). We derive defining relations for reflection type subsets in terms of irreducible characters and discuss how to obtain from that the corresponding costratification of the Hilbert space of the system. To illustrate the method, we give explicit results for some low rank classical groups.

1.
R.
Abraham
and
J. E.
Marsden
,
Foundations of Mechanics
(
Benjamin/Cummings
,
1978
).
2.
A.
Borel
and
J.
de Siebenthal
, “
Les sous-groupes fermés de rang maximum des groupes de Lie clos
,”
Comment. Math. Helv.
23
,
200
221
(
1949
).
3.
N.
Bourbaki
,
Lie Groups and Lie Algebras
(
Springer
,
2005
), Chaps. 7–9.
4.
T.
Bröcker
and
T.
tom Dieck
,
Representations of Compact Lie Groups
(
Springer
,
1995
).
5.
R.
Carter
, “
Conjugacy classes in the Weyl group
,”
Compos. Math.
25
,
1
59
(
1972
).
6.
S.
Charzyński
,
J.
Kijowski
,
G.
Rudolph
, and
M.
Schmidt
, “
On the stratified classical configuration space of lattice QCD
,”
J. Geom. Phys.
55
,
137
178
(
2005
).
7.
S.
Charzyński
,
G.
Rudolph
, and
M.
Schmidt
, “
On the topological structure of the stratified classical configuration space of lattice QCD
,”
J. Geom. Phys.
58
,
1607
1623
(
2008
).
8.
J. M.
Douglass
,
G.
Pfeiffer
, and
G.
Röhrle
, “
On reflection subgroups of finite Coxeter groups
,” Mathematisches Forschungsinstitut Oberwolfach, preprint arXiv:1101.5893v3 (
2011
).
9.
M. J.
Dyer
and
G. I.
Lehrer
, “
Reflection subgroups of finite and affine Weyl groups
,”
Trans. Am. Math. Soc.
363
,
5971
6005
(
2011
).
10.
E. B.
Dynkin
, “
Semisimple subalgebras of semisimple Lie algebras
,”
Am. Math. Soc. Transl., Ser. 2
6
,
111
244
(
1957
);
E. B.
Dynkin
,
Mat. Sb.
30
,
349
462
(
1952
) (in Russian).
11.
R.
Feger
and
T. W.
Kephart
, “
LieART–a Mathematica application for Lie algebras and representation theory
,” preprint arXiv:1206.6379. Package hosted at http://lieart.hepforge.org/.
12.
A.
Felikson
and
P.
Tumarkin
, “
Reflection subgroups of Euclidean reflection groups
,”
Sb. Math.
196
,
1349
1369
(
2005
); preprint arXiv:math/0402403v2.
13.
E.
Fischer
,
G.
Rudolph
, and
M.
Schmidt
, “
A lattice gauge model of singular Marsden-Weinstein reduction. Part I. Kinematics
,”
J. Geom. Phys.
57
,
1193
1213
(
2007
).
14.
M.
Geck
,
G.
Hiss
,
F.
Lübeck
,
G.
Malle
, and
G.
Pfeiffer
, “
CHEVIE – A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras
,”
Appl. Algebra Eng. Commun. Comput.
7
,
175
210
(
1996
).
15.
H.
Grundling
and
G.
Rudolph
, “
QCD on an infinite lattice
,”
Commun. Math. Phys.
318
,
717
766
(
2013
); e-print arXiv:1108.2129v2.
16.
W. Y.
Hsiang
,
Lectures on Lie Groups
(
World Scientific
,
2000
).
17.
B. C.
Hall
, “
The Segal-Bargmann coherent state transform for compact Lie groups
,”
J. Funct. Anal.
122
,
103
151
(
1994
).
18.
B. C.
Hall
, “
Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type
,”
Commun. Math. Phys.
226
,
233
268
(
2002
).
19.
J.
Huebschmann
, “
Kähler spaces, nilpotent orbits, and singular reduction
,”
Mem. Amer. Math. Soc.
814
(
2004
); preprint arXiv:math.DG/0104213.
20.
J.
Huebschmann
, “
Singular Poisson-Kähler geometry of certain adjoint quotients
,” in
Proceedings of the Mathematical Legacy of C. Ehresmann, Bedlewo, 2005
[
Banach Cent. Publ.
76
,
325
347
(
2007
)]; preprint arXiv:math.SG/0610614.
21.
J.
Huebschmann
, “
Kirillov's character formula, the holomorphic Peter-Weyl theorem, and the Blattner-Kostant-Sternberg pairing
,”
J. Geom. Phys.
58
,
833
848
(
2008
); preprint arXiv:math.DG/0610613.
22.
J.
Huebschmann
,
G.
Rudolph
, and
M.
Schmidt
, “
A lattice gauge model for quantum mechanics on a stratified space
,”
Commun. Math. Phys.
286
,
459
494
(
2009
).
23.
P. D.
Jarvis
,
J.
Kijowski
, and
G.
Rudolph
, “
On the structure of the observable algebra of QCD on the lattice
,”
J. Phys. A
38
,
5359
5377
(
2005
).
24.
J.
Kijowski
and
G.
Rudolph
, “
On the Gauss law and global charge for quantum chromodynamics
,”
J. Math. Phys.
43
,
1796
1808
(
2002
).
25.
J.
Kijowski
and
G.
Rudolph
, “
Charge superselection sectors for QCD on the lattice
,”
J. Math. Phys.
46
,
032303
(
2005
).
26.
R. V.
Moody
and
J.
Patera
, “
Fast recursion formula for weight multiplicities
,”
Bull. Am. Math. Soc.
7
(
1
),
237
242
(
1982
).
27.
J.-P.
Ortega
and
T. S.
Ratiu
,
Momentum Maps and Hamiltonian Reduction
,
Progress in Mathematics
Vol.
222
(
Birkhäuser
,
2004
).
28.
M. J.
Pflaum
,
Analytic and Geometric Study of Stratified Spaces
,
Lecture Notes in Mathematics
Vol.
1768
(
Springer
,
2001
).
29.
G.
Rudolph
,
M.
Schmidt
, and
I. P.
Volobuev
, “
Classification of gauge orbit types for SUn-gauge theories
,”
J. Math. Phys. Anal. Geom.
5
,
201
241
(
2002
).
30.
G.
Rudolph
and
M.
Schmidt
, “
On the algebra of quantum observables for a certain gauge model
,”
J. Math. Phys.
50
,
052102
(
2009
).
31.
M.
Schmidt
, “
Classification and partial ordering of reductive Howe dual pairs of classical Lie group
,”
J. Geom. Phys.
29
,
283
318
(
1999
).
32.
M.
Schönert
 et al., “
GAP – Groups, algorithms, and programming – version 3 release 4 patchlevel 4
,” Lehrstuhl für Mathematik, RWTH Aachen,
1997
.
33.
B.
Simon
,
Representations of Finite and Compact Groups
,
Graduate Studies in Mathematics
Vol.
10
(
American Mathematical Society
,
1996
).
34.
R.
Sjamaar
and
E.
Lerman
, “
Stratified symplectic spaces and reduction
,”
Ann. Math.
134
,
375
422
(
1991
).
35.
Wolfram Research, Inc., Mathematica, Version 8.0, Champaign, IL,
2010
.
You do not currently have access to this content.