In recent three-loop calculations of massive Feynman integrals within Quantum Chromodynamics (QCD) and, e.g., in recent combinatorial problems the so-called generalized harmonic sums (in short S-sums) arise. They are characterized by rational (or real) numerator weights also different from ±1. In this article we explore the algorithmic and analytic properties of these sums systematically. We work out the Mellin and inverse Mellin transform which connects the sums under consideration with the associated Poincaré iterated integrals, also called generalized harmonic polylogarithms. In this regard, we obtain explicit analytic continuations by means of asymptotic expansions of the S-sums which started to occur frequently in current QCD calculations. In addition, we derive algebraic and structural relations, like differentiation with respect to the external summation index and different multi-argument relations, for the compactification of S-sum expressions. Finally, we calculate algebraic relations for infinite S-sums, or equivalently for generalized harmonic polylogarithms evaluated at special values. The corresponding algorithms and relations are encoded in the computer algebra package HarmonicSums.

1.
J.
Ablinger
,
J.
Blümlein
,
S.
Klein
, and
C.
Schneider
, “
Modern summation methods and the computation of 2- and 3-loop Feynman diagrams
,”
Nucl. Phys. B, Proc. Suppl.
205–206
,
110
115
(
2010
); e-print arXiv:1006.4797 [math-ph].
2.
J.
Ablinger
,
I.
Bierenbaum
,
J.
Blümlein
,
A.
Hasselhuhn
,
S.
Klein
,
C.
Schneider
, and
F.
Wißbrock
, “
Heavy flavor DIS Wilson coefficients in the asymptotic regime
,”
Nucl. Phys. B, Proc. Suppl.
205–206
,
242
249
(
2010
); e-print arXiv:1007.0375 [hep-ph].
3.
J.
Ablinger
,
J.
Blümlein
,
S.
Klein
,
C.
Schneider
, and
F.
Wißbrock
, “
The
$O(\alpha _s^3)$
O(αs3)
massive operator matrix elements of O(nf) for the structure function F2(x, Q2) and transversity
,”
Nucl. Phys. B
844
,
26
54
(
2011
); e-print arXiv:1008.3347 [hep-ph].
4.
J.
Ablinger
, “
A computer algebra toolbox for harmonic sums related to particle physics
,” M.S. thesis,
Johannes Kepler University
,
2009
; e-print arXiv:1011.1176 [math-ph].
5.
J.
Ablinger
,
J.
Blümlein
, and
C.
Schneider
, “
Harmonic sums and polylogarithms generated by cyclotomic polynomials
,”
J. Math. Phys.
52
,
102301
(
2011
); e-print arXiv:1105.6063 [math-ph].
6.
J.
Ablinger
, “
Computer algebra algorithms for special functions in particle physics
,” Ph.D. dissertation (
J. Kepler University
,
2012
).
7.
J.
Ablinger
,
J.
Blümlein
,
A.
Hasselhuhn
,
S.
Klein
,
C.
Schneider
, and
F.
Wißbrock
, “
Massive 3-loop ladder diagrams for quarkonic local operator matrix elements
,”
Nucl. Phys. B
864
,
52
84
(
2012
); e-print arXiv:1206.2252 [hep-ph].
8.
J.
Ablinger
,
J.
Blümlein
,
M.
Round
, and
C.
Schneider
, “
Advanced computer algebra algorithms for the expansion of Feynman integrals
,” in
Proceedings of the Loops and Legs in Quantum Field Theory 2012
,
PoS(LL2012)050
(
SISSA
,
Trieste
,
2012
), pp.
1
14
; e-print arXiv:1210.1685 [cs.SC].
9.
J.
Ablinger
,
J.
Blümlein
,
A.
De Freitas
,
A.
Hasselhuhn
,
S.
Klein
,
C.
Schneider
, and
F.
Wißbrock
, “
New results on the 3-loop heavy flavor Wilson coefficients in deep-inelastic scattering
,” in
Proceedings of the 36th International Conference on High Energy Physics
,
PoS(ICHEP2012)270
, (
SISSA
,
Trieste
,
2012
) pp.
1
9
; e-print arXiv:1212.5950 [hep-ph].
10.
J.
Ablinger
,
J.
Blümlein
,
A.
De Freitas
,
A.
Hasselhuhn
,
S.
Klein
,
C.
Raab
,
M.
Round
,
C.
Schneider
, and
F.
Wißbrock
, “
Three-loop contributions to the gluonic massive operator matrix elements at general values of N
,” in
Proceedings of the Loops and Legs in Quantum Field Theory 2012
,
PoS(LL2012)033
(
SISSA
,
Trieste
,
2012
), pp.
1
12
; e-print arXiv:1212.6823 [hep-ph].
11.
J.
Ablinger
,
J.
Blümlein
,
C.
Raab
,
C.
Schneider
, and
F.
Wißbrock
, DESY 13-065 (unpublished).
12.
J.
Ablinger
,
J.
Bümlein
,
C.
Raab
, and
C.
Schneider
, “
Nested binomial and inverse binomial sums
” (unpublished).
13.
S. I.
Alekhin
and
J.
Blümlein
, “
Mellin representation for the heavy flavor contributions to deep inelastic structure functions
,”
Phys. Lett. B
594
,
299
307
(
2004
); e-print arXiv:hep-ph/0404034.
14.
P.
Appell
,
Sur Les Fonctions Hypérgéometriques de Plusieurs Variables
(
Gauthier-Villars
,
Paris
,
1925
).
15.
P.
Appell
and
J. Kampé
de Fériet
,
Fonctions Hypérgéometriques; Polynômes d'Hermite
(
Gauthier-Villars
,
Paris
,
1926
).
16.
W. N.
Bailey
,
Generalized Hypergeometric Series
(
Cambridge University Press
,
Cambridge
,
1935
).
17.
J.
Bernoulli
,
Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis, et epistola gallicé scripta de ludo pilae reticularis
(
Brüder Thurneysen
,
Basel
,
1713
).
18.
J.
Blümlein
and
N.
Kochelev
, “
On the twist-2 and twist-3 contributions to the spin dependent electroweak structure functions
,”
Nucl. Phys. B
498
,
285
309
(
1997
); e-print arXiv:hep-ph/9612318.
19.
J.
Blümlein
and
S.
Kurth
, “
Harmonic sums and Mellin transforms up to two loop order
,”
Phys. Rev. D
60
,
014018
(
1999
); e-print arXiv:hep-ph/9810241.
20.
J.
Blümlein
, “
Analytic continuation of Mellin transforms up to two loop order
,”
Comput. Phys. Commun.
133
,
76
104
(
2000
); e-print arXiv:hep-ph/0003100.
21.
J.
Blümlein
, “
Algebraic relations between harmonic sums and associated quantities
,”
Comput. Phys. Commun.
159
,
19
54
(
2004
); e-print arXiv:hep-ph/0311046.
22.
J.
Blümlein
and
V.
Ravindran
, “
Mellin moments of the next-to-next-to leading order coefficient functions for the Drell-Yan process and hadronic Higgs-boson production
,”
Nucl. Phys. B
716
,
128
172
(
2005
); e-print arXiv:hep-ph/0501178.
23.
J.
Blümlein
and
S.-O.
Moch
, “
Analytic continuation of the harmonic sums for the 3-loop anomalous dimensions
,”
Phys. Lett. B
614
,
53
61
(
2005
); e-print arXiv:hep-ph/0503188.
24.
J.
Blümlein
and
V.
Ravindran
, “
$O(\alpha ^2_s)$
O(αs2)
timelike Wilson coefficients for parton-fragmentation functions in Mellin space
,”
Nucl. Phys. B
749
,
1
24
(
2006
); e-print arXiv:hep-ph/0604019.
25.
J.
Blümlein
and
S.
Klein
, “
Structural relations between harmonic sums up to w = 6
,” in PoS ACAT (2007) 084 (SISSA, Trieste,
2007
); e-print arXiv:0706.2426 [hep-ph].
26.
J.
Blümlein
, “
Structural relations of harmonic sums and Mellin transforms at weight w = 6
,” in
Motives, Quantum Field Theory, and Pseudodifferential Operators
,
Clay Mathematics Proceedings
Vol.
12
, edited by
A.
Carey
,
D.
Ellwood
,
S.
Paycha
, and
S.
Rosenberg
(
American Mathematical Society
,
2010
), pp.
167
186
; e-print arXiv:0901.0837 [math-ph].
27.
J.
Blümlein
, “
Structural relations of harmonic sums and Mellin transforms up to weight w = 5
,”
Comput. Phys. Commun.
180
,
2218
2249
(
2009
); e-print arXiv:0901.3106 [hep-ph].
28.
J.
Blümlein
,
D. J.
Broadhurst
, and
J. A. M.
Vermaseren
, “
The multiple zeta value data mine
,”
Comput. Phys. Commun.
181
,
582
625
(
2010
); e-print arXiv:0907.2557 [math-ph] and references therein.
29.
J.
Blümlein
,
S.
Klein
,
C.
Schneider
, and
F.
Stan
, “
A symbolic summation approach to Feynman integral calculus
,”
J. Symb. Comput.
47
,
1267
1289
(
2012
); e-print arXiv:1011.2656 [cs.SC].
30.
J.
Blümlein
,
A.
Hasselhuhn
,
S.
Klein
, and
C.
Schneider
, “
The
$O(\alpha _s^3 n_f T_F^2 C_{A,F})$
O(αs3nfTF2CA,F)
contributions to the gluonic massive operator matrix elements
,”
Nucl. Phys. B
866
,
196
211
(
2013
); e-print arXiv:1205.4184 [hep-ph].
31.
J.
Blümlein
,
A.
Hasselhuhn
, and
C.
Schneider
, “
Evaluation of multi-sums for large scale problems
,” PoS (RADCOR 2011) 032 (SISSA, Trieste,
2011
); e-print arXiv:1202.4303 [math-ph].
32.
J.
Blümlein
, “
The theory of deeply inelastic scattering
,”
Prog. Part. Nucl. Phys.
69
,
28
84
(
2013
); e-print arXiv:1208.6087 [hep-ph].
33.
R. P.
Boas
, Jr.
,
Entire Functions
(
Academic Press Inc.
,
New York
,
1954
).
34.
C.
Bogner
and
F. C. S.
Brown
, “
Symbolic integration and multiple polylogarithms
,” in PoS(LL2012) 053 (SISSA, Trieste,
2012
); e-print arXiv:1209.6524 [hep-ph].
35.
J. M.
Borwein
,
D. M.
Bradley
,
D. J.
Broadhurst
, and
P.
Lisonek
, “
Special values of multiple polylogarithms
,”
Trans. Am. Math. Soc.
353
,
907
941
(
2001
); e-print arXiv:math/9910045 [math-ca].
36.
R. A.
Brandt
and
G.
Preparata
, “
The light cone and photon-hadron interactions
,”
Fortschr. Phys.
20
,
571
594
(
1972
).
37.
D. J.
Broadhurst
, “
Massive three-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity
,”
Eur. Phys. J. C
8
,
311
333
(
1999
); e-print arXiv:hep-th/9803091.
38.
F. C. S.
Brown
, “
Single-valued multiple polylogarithms in one variable
,”
C. R. Acad. Sci. Paris, Ser. I
338
,
527
532
(
2004
).
39.
F. C. S.
Brown
, “
The massless higher-loop two-point function
,”
Commun. Math. Phys.
287
,
925
958
(
2009
); e-print arXiv:0804.1660 [math.AG].
40.
F. C. S.
Brown
, “
On the periods of some Feynman integrals
,” e-print arXiv:0910.0114 [math.AG].
41.
V. V.
Bytev
,
M. Y.
Kalmykov
, and
B. A.
Kniehl
, “
HYPERDIRE: HYPERgeometric functions DIfferential REduction MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: Now with pFp − 1, F1,F2,F3,F4
,” e-print arXiv:1105.3565 [math-ph].
42.
F. D.
Carlson
, “
Sur une classe de séries de Taylor
,” Ph.D. dissertation (
Uppsala University
,
1914
); see also http://en.wikipedia.org/wiki/Carlson%27s_theorem.
43.
P.
Cartier
, “
A primer of Hopf algebras
,” preprint IHES/M/06/40 (
2006
), p.
81
.
44.
F.
Chavez
and
C.
Duhr
, “
Three-mass triangle integrals and single-valued polylogarithms
,”
J. High Eenergy Phys.
11
(
2012
)
114
; e-print arXiv:1209.2722 [hep-ph].
45.
K. T.
Chen
, “
Algebras of iterated path integrals and fundamental groups
,”
Trans. Am. Math. Soc.
156
(
3
),
359
379
(
1971
).
46.
A.
Connes
and
D.
Kreimer
, “
Hopf algebras, renormalization and noncommutative geometry
,”
Commun. Math. Phys.
199
,
203
242
(
1998
); e-print arXiv:hep-th/9808042.
47.
C.
Costermans
,
J. Y.
Enjalbert
,
H. N.
Minh
, and
M.
Petitot
, “
Structure and asymptotic expansion of multiple harmonic sums
,” in Proceedings of the International Symposium on Symbolic and Algebraic Computation,
2005
.
48.
A.
Devoto
and
D. W.
Duke
, “
Table of integrals and formulae for Feynman diagram calculations
,”
Riv. Nuovo Cimento
7
(
6
),
1
39
(
1984
).
49.
L. J.
Dixon
,
C.
Duhr
and
J.
Pennington
, “
Single-valued harmonic polylogarithms and the multi-Regge limit
,”
J. High Energy Phys.
10
(
2012
)
074
, e-print arXiv:1207.0186 [hep-th].
50.
K.
Driver
,
H.
Prodinger
,
C.
Schneider
, and
J. A. C.
Weideman
, “
Padé approximations to the logarithm III: Alternative methods and additional results
,”
Ramanujan J.
12
,
299
314
(
2006
).
51.
J. M.
Drummond
, “
Generalised ladders and single-valued polylogarithms
,” e-print arXiv:1207.3824 [hep-th].
52.
C.
Duhr
, “
Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes
,”
J. High Energy Phys.
08
(
2012
)
043
; e-print arXiv:1203.0454 [hep-ph].
53.
Higher Transcendental Functions
, edited by
A.
Erdélyi
,
Bateman Manuscript Project
Vol.
I
(
McGraw-Hill
,
New York
,
1953
).
54.
L.
Euler
, “
Methodus generalis summandi progressiones
,”
Comment. Acad. Sci. Petropolitan.
6
,
68
97
(
1738
).
55.
L.
Euler
,
Institutiones Calculi Integralis
(
Impensis Academiae Imperialis Scientiarum
,
Petropoli
,
1768
), Vols.
I–III
.
56.
L.
Euler
, “
Meditationes circa singulare serium genus
,”
Novi Comment. Acad. Sci. Petropolitan.
20
,
140
186
(
1776
).
57.
H.
Exton
,
Multiple Hypergeometric Functions and Applications
(
Ellis Horwood Limited
,
Chichester
,
1976
).
58.
H.
Exton
,
Handbook of Hypergeometric Integrals
(
Ellis Horwood Limited
,
Chichester
,
1978
).
59.
H. R. P.
Ferguson
and
D. H.
Bailey
, “
A polynomial time, numerically stable integer relation algorithm
,”
RNR
Technical Report RNR-91-032,
1992
.
60.
E.
Fermi
, “
On the theory of the impact between atoms and electrically charged particles
,”
Z. Phys.
29
,
315
327
(
1924
).
61.
P.
Flajolet
and
R.
Sedgewick
,
Analytic Combinatorics
(
Cambridge University Press
,
2009
).
62.
E. G.
Floratos
,
C.
Kounnas
and
R.
Lacaze
, “
Higher order QCD effects in inclusive annihilation and deep inelastic scattering
,”
Nucl. Phys. B
192
,
417
462
(
1981
).
63.
Y.
Frishman
, “
Operator products at almost light like distances
,”
Ann. Phys.
66
,
373
389
(
1971
).
64.
T.
Gehrmann
and
E.
Remiddi
, “
Two loop master integrals for γ* → 3 jets: The planar topologies
,”
Nucl. Phys. B
601
,
248
286
(
2001
); e-print arXiv:hep-ph/0008287.
65.
T.
Gehrmann
and
E.
Remiddi
, “
Numerical evaluation of two-dimensional harmonic polylogarithms
,”
Comput. Phys. Commun.
144
,
200
223
(
2002
); e-print arXiv:hep-ph/0111255.
66.
A. B.
Goncharov
, “
Multiple polylogarithms, cyclotomy and modular complexes
,”
Math. Res. Lett.
5
,
497
516
(
1998
); e-print arXiv:1105.2076 [math.AG].
67.
A.
Gonzalez-Arroyo
,
C.
Lopez
, and
F. J.
Yndurain
, “
Second order contributions to the structure functions in deep inelastic scattering. 1. Theoretical calculations
,”
Nucl. Phys. B
153
,
161
186
(
1979
).
68.
C.
Hardouin
and
M.
Singer
, “
Differential Galois theory of linear difference equations
,”
Math. Ann.
342
,
333
377
(
2008
).
69.
G. H.
Hardy
and
E. M.
Wright
,
An Introduction to the Theory of Numbers
,
5th ed.
(
Calrendon Press
,
Oxford
,
1978
).
70.
J.
van der Hoeven
,
Transseries and Real Differential Algebra
,
Springer Series: Lecture Notes in Mathematics
, Vol.
1888
(
Springer
,
2006
).
71.
M.
Hoffman
, “
Quasi-shuffle products
,”
J. Algebr. Comb.
11
,
49
68
(
2000
); e-print arXiv:math/9907173 [math.QA].
72.
H.
Hopf
, “
Über die Topologie der Gruppen-Mannigfaltigkeiten und ihrer Verallgemeinerungen
,”
Ann. Math.
42
,
22
52
(
1941
).
73.
T.
Huber
and
D.
Maitre
, “
HypExp: A mathematica package for expanding hypergeometric functions around integer-valued parameters
,”
Comput. Phys. Commun.
175
,
122
144
(
2006
); e-print arXiv:hep-ph/0507094.
74.
T.
Huber
and
D.
Maitre
, “
HypExp 2, Expanding hypergeometric functions about half-integer parameters
,”
Comput. Phys. Commun.
178
,
755
776
(
2008
); e-print arXiv:0708.2443 [hep-ph].
75.
M. Y.
Kalmykov
, “
Gauss' hypergeometric function: Reduction, ɛ-expansion for integer/half-integer parameters and Feynman diagrams
,”
J. High Energy Phys.
04
(
2006
)
056
; e-print arXiv:hep-th/0602028.
76.
M. Y.
Kalmykov
,
B. F. L.
Ward
, and
S. A.
Yost
, “
On the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters
,”
J. High Energy Phys.
11
(
2007
)
009
; e-print arXiv:0708.0803 [hep-th].
77.
M.
Karr
, “
Summation in finite terms
,”
J. ACM
28
,
305
350
(
1981
).
78.
F.
Klein
, “
Über die Hypergeometrische Funktion
,” Vorlesung gehalten im WS 1893/94, aufgearbeitet von E. Ritter (
B.G. Teubner, Leipzig
,
1906
).
79.
K. S.
Kölbig
,
J. A.
Mignoco
, and
E.
Remiddi
, “
On Nielsen's generalized polylogarithms and their numerical calculation CERN-DD-CO-69-5
,”
BIT Numer. Math.
10
,
38
73
(
1970
).
80.
K. S.
Kölbig
, “
Nielsen's generalized polylogarithms
,”
SIAM J. Math. Anal.
17
,
1232
1258
(
1986
).
81.
A. V.
Kotikov
and
V. N.
Velizhanin
, “
Analytic continuation of the Mellin moments of deep inelastic structure functions
,” e-print arXiv:hep-ph/0501274.
82.
D.
Kreimer
, “
On the Hopf algebra structure of perturbative quantum field theories
,”
Adv. Theor. Math. Phys.
2
,
303
343
(
1998
); e-print arXiv:q-alg/9707029.
83.
J. A.
Lappo-Danilevsky
,
Mémoirs sur la Théorie des Systèmes Différentielles Linéaires
(
Chelsea Publ. Co
,
New York, NY
,
1953
).
84.
L.
Lewin
,
Dilogarithms and Associated Functions
(
Macdonald
,
London
,
1958
).
85.
L.
Lewin
,
Polylogarithms and Associated Functions
(
North Holland
,
New York
,
1981
).
86.
C.
MacLaurin
,
Treatise of Fluxions
(
T. W. and T. Ruddimans
,
Edinburgh
,
1742
).
87.
R.
Mertig
and
W. L.
van Neerven
, “
The calculation of the two loop spin splitting functions
$P_{ij}^{(1)}(x)$
Pij(1)(x)
,”
Z. Phys. C
70
,
637
654
(
1996
), e-print arXiv:hep-ph/9506451.
88.
J.
Milner
and
J.
Moore
, “
On the structure of Hopf algebras
,”
Ann. Math.
81
,
211
264
(
1965
).
89.
S.-O.
Moch
and
J. A. M.
Vermaseren
, “
Deep inelastic structure functions at two loops
,”
Nucl. Phys. B
573
,
853
907
(
2000
); e-print arXiv:hep-ph/9912355 and references quoted therein.
90.
S.-O.
Moch
,
P.
Uwer
, and
S.
Weinzierl
, “
Nested sums, expansion of transcendental functions and multiscale multiloop integrals
,”
J. Math. Phys.
43
,
3363
3386
(
2002
); e-print arXiv:hep-ph/0110083.
91.
S.-O.
Moch
,
J. A. M.
Vermaseren
, and
A.
Vogt
, “
The three loop splitting functions in QCD: The nonsinglet case
,”
Nucl. Phys. B
688
,
101
134
(
2004
); e-print arXiv:hep-ph/0403192.
92.
S.-O.
Moch
and
P.
Uwer
, “
XSummer: Transcendental functions and symbolic summation in form
,”
Comput. Phys. Commun.
174
,
759
770
(
2006
); e-print arXiv:math-ph/0508008.
93.
A. F.
Möbius
, “
Über eine besondere Art von Umkehrung der Reihen
,”
J. Reine Angew. Math.
9
,
105
123
(
1832
).
94.
N.
Nielsen
,
Handbuch der Theorie der Gammafunktion
(
B. G. Teubner
,
Leipzig
,
1906
).
95.
N.
Nielsen
,
Theorie des Integrallogarithmus und verwandter Transzendenten
(
B. G. Teubner
,
Leipzig
,
1906
).
96.
N.
Nielsen
, “
Der Eulersche Dilogarithmus und seine Verallgemeinerungen
,”
Nova Acta Leopold., Halle
XC
,
121
211
(
1909
).
97.
N.
Nielsen
,
Traité élémentaire des nombres de Bernoulli
(
Gauthier-Villars
,
Paris
,
1923
).
98.
R.
Osburn
and
C.
Schneider
, “
Gaussian hypergeometric series and extensions of supercongruences
,”
Math. Comput.
78
,
1
19
(
2008
).
99.
P.
Paule
and
C.
Schneider
, “
Computer proofs of a new family of harmonic number identities
,”
Adv. Appl. Math.
31
,
359
378
(
2003
).
100.
P.
Paule
and
C.
Schneider
, “
Truncating binomial series with symbolic summation
,”
INTEGERS, Electron. J. Comb. Number Theory
7
(
A22
),
1
9
(
2007
).
101.
R.
Pemantle
and
C.
Schneider
, “
When is 0.999... equal to 1?
,”
Am. Math. Monthly
114
,
344
350
(
2007
).
102.
M.
Petkovšek
,
H. S.
Wilf
, and
D.
Zeilberger
,
A = B
(
A. K. Peters
,
Wellesley, MA
,
1996
).
103.
H.
Poincaré
, “
Sur les groupes des équations linéaires
,”
Acta Math.
4
,
201
312
(
1884
).
104.
D. E.
Radford
, “
A natural ring basis for the shuffle algebra and an application to group schemes
,”
J. Algebra
58
,
432
454
(
1979
).
105.
E.
Remiddi
and
J. A. M.
Vermaseren
, “
Harmonic polylogarithms
,”
Int. J. Mod. Phys. A
15
,
725
754
(
2000
); e-print arXiv:hep-ph/9905237.
106.
C.
Reutenauer
,
Free Lie Algebras
(
Oxford University Press
,
1993
).
107.
L.
Saalschütz
,
Vorlesungen über die Bernoullischen Zahlen
(
Springer
,
Berlin
,
1893
).
108.
B.
Salvy
and
J.
Shackell
, “
Symbolic asymptotics: Multiseries of inverse functions
,”
J. Symb. Comput.
27
,
543
563
(
1999
).
109.
C.
Schneider
, “
The summation package Sigma: Underlying principles and a rhombus tiling application
,”
Discrete Math. Theor. Comput. Sci.
6
,
365
386
(
2004
).
110.
C.
Schneider
, “
Solving parameterized linear difference equations in terms of indefinite nested sums and products
,”
J. Differ. Eq. Appl.
11
(
9
),
799
821
(
2005
).
111.
C.
Schneider
, “
A new Sigma approach to multi-summation
,”
Adv. Appl. Math.
34
(
4
),
740
767
(
2005
).
112.
C.
Schneider
, “
Product representations in ΠΣ-fields
,”
Ann. Comb.
9
(
1
),
75
99
(
2005
).
113.
C.
Schneider
, “
Symbolic summation assists combinatorics
,”
Sem. Lothar. Combin.
56
,
1
36
(
2007
).
114.
C.
Schneider
, “
Apéry's double sum is plain sailing indeed
,”
Electron. J. Com.
14
,
1
3
(
2007
).
115.
C.
Schneider
, “
A refined difference field theory for symbolic summation
,”
J. Symb. Comput.
43
(
9
),
611
644
(
2008
); e-print arXiv:0808.2543 [cs.SC].
116.
C.
Schneider
, “
Parameterized telescoping proves algebraic independence of sums
,”
Ann. Comb.
14
(
4
),
533
552
(
2010
); e-print arXiv:0808.2596 [cs.SC].
117.
C.
Schneider
, “
Structural theorems for symbolic summation
,”
Appl. Algebra Eng. Commun. Comput.
21
(
1
),
1
32
(
2010
).
118.
C.
Schneider
, “
A symbolic summation approach to find optimal nested sum representations
,” in
Motives, Quantum Field Theory, and Pseudodifferential Operators
,
Clay Mathematics Proceedings
Vol.
12
, edited by
A.
Carey
,
D.
Ellwood
,
S.
Paycha
, and
S.
Rosenberg
(
American Mathematical Society
,
2010
), pp.
285
308
; e-print arXiv:0904.2323 [cs.SC].
119.
C.
Schneider
, “
The code SumProduction
” (unpublished).
120.
L. J.
Slater
,
Generalized Hypergeometric Functions
(
Cambridge University Press
,
Cambridge
,
1966
).
121.
M. E.
Sweedler
,
Hopf Algebras
(
Benjamin
,
New York
,
1969
).
122.
E. C.
Titchmarsh
,
The Theory of Functions
, 2nd ed. (
Oxford University Press
,
Oxford
,
1939
), Sec. 5.81.
123.
J. A. M.
Vermaseren
, “
Harmonic sums, Mellin transforms and integrals
,”
Int. J. Mod. Phys. A
14
,
2037
2076
(
1999
); e-print arXiv:hep-ph/9806280.
124.
J. A. M.
Vermaseren
, e-print arXiv:math-ph/0010025.
125.
J. A. M.
Vermaseren
,
A.
Vogt
and
S.-O.
Moch
, “
The third-order QCD corrections to deep-inelastic scattering by photon exchange
,”
Nucl. Phys. B
724
,
3
182
(
2005
); e-print arXiv:hep-ph/0504242.
126.
A.
Vogt
,
S.-O.
Moch
and
J. A. M.
Vermaseren
, “
The three-loop splitting functions in QCD: The singlet case
,”
Nucl. Phys. B
691
,
129
181
(
2004
); e-print arXiv:hep-ph/0404111.
127.
J.
Vollinga
and
S.
Weinzierl
, “
Numerical evaluation of multiple polylogarithms
,”
Comput. Phys. Commun.
167
,
177
194
(
2005
); e-print arXiv:hep-ph/0410259.
128.
S.
Weinzierl
, “
Symbolic expansion of transcendental functions
,”
Comput. Phys. Commun.
145
,
357
370
(
2002
); e-print arXiv:math-ph/0201011.
129.
S.
Weinzierl
, “
Expansion around half integer values, binomial sums and inverse binomial sums
,”
J. Math. Phys.
45
,
2656
2673
(
2004
); e-print arXiv:hep-ph/0402131.
130.
S.
Weinzierl
, “
The art of computing loop integrals
,” in
Proceedings of the Workshop on Renormalization and Universality in Mathematical Physics
, edited by
I.
Binder
and
D.
Kreimer
(American Mathematical Society, Providence, 2007) [
Fields Inst. Commun.
50
,
345
395
(
2007
); e-print arXiv:hep-ph/0604068.
131.
S.
Weinzierl
, “
Introduction to Feynman integrals
,” e-print arXiv:1005.1855 [hep-ph].
132.
E. T.
Whittaker
and
G. N.
Watson
,
A Course of Modern Analysis
,
4th ed.
(
Cambridge University Press
,
Cambridge
,
1927
).
133.
K. G.
Wilson
, “
Non-Lagrangian models of current algebra
,”
Phys. Rev.
179
,
1499
(
1969
).
134.
J.
Wimp
and
D.
Zeilberger
, “
Resurrecting the asymptotics of linear recurrences
,”
J. Math. Anal. Appl.
111
,
162
176
(
1985
).
135.
E.
Witt
, “
Treue Darstellung Liescher Ringe
,”
J. Reine Angew. Math.
177
,
152
160
(
1937
).
136.
E.
Witt
, “
Die Unterringe der freien Lieschen Ringe
,”
Math. Z.
64
,
195
216
(
1956
).
137.
F. J.
Yndurain
,
The Theory of Quark and Gluon Interactions
(
Springer
,
Berlin
,
1983
).
138.
K.
Yosida
,
Functional Analysis
,
5th ed.
(
Springer
,
Berlin
,
1978
).
139.
D.
Zagier
, “
Values of zeta functions and their applications
,” in
Progress in Mathematics
,
First European Congress of Mathematics Vol. II, Paris, 1992
(
Birkhäuser
,
Basel/Boston
,
1994
), Vol.
120
, pp.
497
512
.
140.
D.
Zagier
, “
The dilogarithm function
,” in
Frontiers in Number Theory, Physics, and Geometry II – On Conformal Field Theories, Discrete Groups and Renormalization
, edited by
P.
Cartier
,
B.
Julia
,
P.
Moussa
 et al (
Springer
,
Berlin
,
2007
), pp.
3
65
.
141.
J.
Zhao
, “
Standard Relations of Multiple Polylogarithm Values at Roots of Unity
,”
Doc. Math.
15
,
1
34
(
2010
); e-print arXiv:0707.1459v7 [math.NT].
142.
W.
Zimmermann
,
Lectures on Elementary Particle Physics and Quantum Field Theory
,
Brandeis Summer Institute
(
MIT Press
,
Cambridge
,
1970
), Vol.
1
, p.
395
.
143.
In general, relations containing sums of logarithmic growth such as S1(n) can be also formally utilized in asymptotic expansions. However, in the following only convergent sums are considered.
144.
In http://www.risc.jku.at/research/combinat/software/HarmonicSums/ all relations are available up to weight four. The most involved calculation is the alphabet xi ∈ {1, −1, 1/2, −1/2, 2, −2}; the relations are obtained executing
$\texttt {ComputeSSumInfBasis}\left[4, \lbrace 1, -1, 1/2, -1/2, 2, -2\rbrace , \texttt {ExtendAlphabet}\rightarrow \texttt {True}\right]$
ComputeSSumInfBasis4,{1,1,1/2,1/2,2,2},ExtendAlphabetTrue
in about 36 hours.
145.
Obviously, the xi must be chosen from a subfield of
$\mathbb {R}$
R
which is computable, in particular which can be treated within the computer algebra system Mathematica.
You do not currently have access to this content.