The paper is devoted to a model for the procedure of formation of a composite material constituted of solid fibers and of a solidifying matrix. The solidification process for the matrix depends on the temperature and on the degree of cure, which are used for the modeling of the mechanical properties of the matrix. Namely, the mechanical properties are described by Kelvin-Voigt viscoelastic equation with rapidly oscillating periodic coefficients depending on the temperature and the degree of cure. The latter are in turn solutions of a thermo-chemical problem with rapidly varying coefficients. We prove an error estimate for approximation of the viscoelastic problem by the same equation but with the coefficients depending on solution to the homogenized thermo-chemical problem. This estimate, in combination with our recent estimates for the viscoelastic (with time-dependent coefficients) and thermo-chemical homogenization problems, generates the overall error bound for the asymptotic solution to the full coupled thermo-chemo-viscoelastic model.

1.
Z.
Abdessamad
,
I.
Kostin
,
G.
Panasenko
, and
V. P.
Smyshlyaev
, “
Memory effect in homogenization of a viscoelastic Kelvin-Voigt model with time dependent coefficients
,”
Math. Models Meth. Appl. Sci.
19
(
9
),
1603
1630
(
2009
).
2.
Z.
Abdessamad
,
I.
Kostin
,
G.
Panasenko
, and
V. P.
Smyshlyaev
, “
Homogenization of thermo-viscoelastic Kelvin-Voigt model
,”
C. R. Mec.
335
,
423
429
(
2007
).
3.
H. D.
Alber
and
K.
Chelminski
, “
Quasistatic problems in viscoplasticity theory II: Models with nonlinear hardening
,”
Math. Models Meth. Appl. Sci.
17
,
189
213
(
2007
).
4.
Y.
Amirat
,
K.
Hamdache
, and
A.
Ziani
, “
Homogénéisation non locale pour des équations dégénérées à coefficients périodiques
,”
C. R. Acad. Sci. Paris Sér. I Math.
312
(
13
),
963
966
(
1991
).
5.
A. A.
Amosov
and
G. P.
Panasenko
, “
The problem of thermo-chemical formation of a composite material: Properties of solutions and homogenization
,”
J. Math. Sci.
181
(
5
),
541
577
(
2012
).
6.
N. S.
Bakhvalov
and
G.
Panasenko
,
Homogenization: Averaging Processes in Periodic Media
(
Nauka
,
Moscow
,
1984
) (in Russian)
[
Mathematics and Its Applications
,
Soviet Series
Vol.
36
(
Kluwer Academic Publishers
,
Dordrecht-Boston-London
,
1989
)].
7.
M.
Bellieud
, “
Homogenization of evolution problems in a fiber reinforced structure
,”
J. Convex Anal.
11
(
2
),
363
385
(
2004
).
8.
A.
Bensoussan
,
J.-L.
Lions
, and
G. C.
Papanicolaou
,
Asymptotic Analysis for Periodic Structures
(
North Holland
,
Amsterdam
,
1978
).
9.
M.
Bellieud
, “
Torsion effects in elastic composites with high contrast
,”
SIAM J. Math. Anal.
41
,
2514
2553
(
2009
/10).
10.
M.
Briane
, “
Homogenization of non-uniformly bounded operators: Critical barrier for nonlocal effects
,”
Arch. Ration. Mech. Anal.
164
(
1
),
73
101
(
2002
).
11.
M.
Camar-Eddine
and
G. W.
Milton
, “
Non-local interactions in the homogenization closure of thermoelectric functionals
,”
Asymptotic Anal.
41
(
3–4
),
259
276
(
2005
).
12.
K. D.
Cherednichenko
,
V. P.
Smyshlyaev
, and
V. V.
Zhikov
, “
Non-local homogenised limits for composite media with highly anisotropic periodic fibres
,”
Proc. R. Soc. Edinburgh, Sect. A
136
(
1
),
87
114
(
2006
).
13.
K. D.
Cherednichenko
, “
Two-scale asymptotics for non-local effects in composites with highly anisotropic fibres
,”
Asymptotic Anal.
49
,
39
59
(
2006
).
14.
H. I.
Ene
,
M. L.
Mascarenhas
, and
J.
Saint Jean Paulin
, “
Fading memory effects in elastic-viscoelastic composites
,”
Math. Modell. Numer. Anal.
31
(
7
),
927
952
(
1997
).
15.
V. N.
Fenchenko
and
E. Ya.
Khruslov
, “
Asymptotic behaviour or the solutions of differential equations with strongly oscillating and degenerating coefficient matrix (Russian)
,”
Dokl. Akad. Nauk Ukr. SSR, Ser. A
4
,
26
30
(
1980
).
16.
G. A.
Francfort
and
P. M.
Suquet
, “
Homogenization and mechanical dissipation in thermoviscoelasticity
,”
Arch. Ration. Mech. Anal.
96
(
3
),
265
293
(
1986
).
17.
M. R.
Kamal
and
S.
Sourour
, “
Kinetics and thermal characteristics of thermoset cure
,”
Polym. Eng. Sci.
13
,
59
77
(
1973
).
18.
E. Ya.
Khruslov
, “
An averaged model of a strongly inhomogeneous medium with memory
,”
Usp. Mat. Nauk
45
(
1
),
197
198
(
1990
)
E. Ya.
Khruslov
, [
Russ. Math. Surveys
45
(
1
),
211
212
(
1990
)].
19.
O. A.
Ladyzenskaja
,
V. A.
Solonnikov
, and
N. N.
Ural'ceva
,
Linear and Quasilinear Equations of Parabolic Type
(
American Mathematical Society
,
Providence, RI
,
1968
).
20.
S.
Meliani
and
G.
Panasenko
, “
Thermochemical modelling of the formation of a composite material
,”
Appl. Anal.
84
(
3
),
229
245
(
2005
).
21.
S.
Meliani
and
L.
Paoli
, “
Numericale analysis of a model of cure process for composites
,”
Math. Methods Appl. Sci.
30
(
4
),
449
478
(
2007
).
22.
O. A.
Oleinik
,
A. S.
Shamaev
, and
G. A.
Yosif'yan
,
Mathematical Problems in Elasticity and Homogenization
(
Elsevier
,
Amsterdam
,
1992
).
23.
G.
Panasenko
,
Multi-Scale Modelling for Structures and Composites
(
Springer
,
2005
).
24.
G. P.
Panasenko
, “
On the scale effect in spatially reinforced composites
,” in
Proceedings of the 2nd USSR Conference on Strength, Rigidity and Technology of Composite Materials
(
Yerevan University Publication
,
Yerevan
,
1984
), Vol.
3
, pp.
22
24
(in Russian).
25.
G. P.
Panasenko
, “
Homogenization of processes in strongly non-honogeneous media
,”
USSR Dokl.
298
(
1
),
76
79
(
1988
) (in Russian)
G. P.
Panasenko
, [
Sov. Phys. Dokl.
33
,
76
79
(
1988
)].
26.
E.
Sanchez-Palencia
,
Nonhomogeneous Media and Vibration Theory
,
Lecture Notes in Physics 127
(
Springer
,
Berlin
,
1980
).
You do not currently have access to this content.